Normobaric Hypoxic Cardiac Rehabilitation: Comparative Effects of Training at 2000 m and 3000 m Simulated Altitude in Post-Myocardial Infarction Patients
Abstract
1. Introduction
2. Aim of the Study
- Which environmental conditions (2000 m vs. 3000 m above sea level) more favorably influence changes in exercise tolerance assessed by cardiopulmonary exercise testing (CPET)?
- Does training under normobaric hypoxic conditions (2000 m and 3000 m above sea level) affect changes in cardiac hemodynamic parameters?
3. Materials and Methods
3.1. Study Population
- History of uncomplicated myocardial infarction, at least 4 weeks post-event,
- Male and female patients aged 35–75 years,
- Eligibility for cardiac rehabilitation according to Model A (≥7 METs),
- Informed consent to participate,
- No active inflammatory diseases or uncontrolled non-cardiac comorbidities.
- Unstable coronary artery disease,
- Recent myocardial infarction (within 4 weeks),
- Chronic heart failure,
- Arrhythmias or conduction abnormalities on ECG,
- Treatment-resistant hypertension,
- Positive stress test,
- Peripheral artery disease of the lower limbs,
- Thrombosis/embolism,
- Chronic obstructive pulmonary disease (COPD),
- Anemia,
- Musculoskeletal disorders preventing exercise testing,
- SARS-CoV-2 infection,
- Lack of consent to participate.
3.2. Study Methods
3.3. Training Protocol
- 2000 m a.s.l.: O2 16.8%, temperature 19.9 °C, CO2 1514 ppm, humidity 33.2%, atmospheric pressure 993 hPa
- 3000 m a.s.l.: O2 14.8%, temperature 21 °C, CO2 1586 ppm, humidity 33.6%, atmospheric pressure 985 hPa
3.4. Statistical Analysis
4. Results
5. Discussion
5.1. Cardiopulmonary Exercise Testing (CPET)
5.2. Echocardiographic Assessment
5.3. Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mbau, L.; Prabhakar, P.M.; Khan, Z. Effectiveness of Cardiac Rehabilitation Services in Low- and Middle-Income Countries: A Systematic Review. Cureus 2023, 15, e50953. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.; Nadar, B.G.; Estêvão, M.D.; Aguiar, D.R.; Ejeh, J.; Khan, Z. Comparing the Outcomes of Digital and Traditional Cardiac Rehabilitation Practices: A Systematic Review and Meta-Analysis. Cureus 2025, 17, e77757. [Google Scholar] [CrossRef]
- Meng, Y.; Zhuge, W.; Huang, H.; Zhang, T.; Ge, X. The effects of early exercise on cardiac rehabilitation-related outcome in acute heart failure patients: A systematic review and meta-analysis. Int. J. Nurs. Stud. 2022, 130, 104237. [Google Scholar] [CrossRef]
- Dibben, G.O.; Faulkner, J.; Oldridge, N.; Rees, K.; Thompson, D.R.; Zwisler, A.D.; Taylor, R.S. Exercise-based cardiac rehabilitation for coronary heart disease: A meta-analysis. Eur. Heart J. 2023, 44, 452–459. [Google Scholar] [CrossRef]
- Bärtsch, P.; Simon, J.; Gibbs, R. Effect of altitude on the heart and the lungs. Circulation 2007, 116, 2191–2202. [Google Scholar] [CrossRef]
- Windsor, J.S.; Rodway, G.W.; Montgomery, H.E. A review of electrocardiography in the high altitude environment. High Alt. Med. Biol. 2010, 11, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Donegani, E.; Hillebrandt, D.; Windsor, J.; Gieseler, U.; Rodway, G.; Schoffl, V.; Kupper, T. Pre-existing cardiovascular conditions and high altitude travel. Consensus statement of the Medical Commission of the Union Internationale des Associations d’Alpinisme (UIAA MedCom). Travel Med. Infect. Dis. 2014, 12, 237–252. [Google Scholar] [CrossRef]
- Schmid, J.P.; Nobel, D.; Brugger, N.; Novak, J.; Palau, P.; Trepp, A.; Wilhelm, M.; Saner, H. Short-term high altitude exposure at 3454 m is well tolerated in patients with stable heart failure. Eur. J. Heart Fail. 2015, 17, 182–186. [Google Scholar] [CrossRef]
- Guazzi, M.; Adams, V.; Conraads, V.; Halle, M.; Mezzani, A.; Vanhees, L.; Arena, R.; Fletcher, G.F.; Forman, D.E.; Kitzman, D.W.; et al. European Association for Cardiovascular Prevention & Rehabilitation; American Heart Association. EACPR/AHA Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 2012, 126, 2261–2274. [Google Scholar] [CrossRef]
- Burtscher, J.; Mallet, R.T.; Burtscher, M.; Millet, G.P. Hypoxia and brain aging: Neurodegeneration or neuroprotection? Ageing Res. Rev. 2021, 68, 101343. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Lis, A.; Nowak, Z.; Grzybowska-Ganszczyk, D.; Jastrzebski, P.; Konarska-Rawluk, A. Comparison of the Effects of Endurance Training Conducted in Conditions of Normoxia and Artificial Hypoxia in Patients After Myocardial Infarction. J. Clin. Med. 2025, 14, 1790. [Google Scholar] [CrossRef]
- Nowak-Lis, A.; Gabrys, T.; Nowak, Z.; Jastrzebski, P.; Szmatlan-Gabry´s, U.; Konarska, A.; Grzybowska-Ganszczyk, D.; Pilis, A. The Use of Artificial Hypoxia in Endurance Training in Patients after Myocardial Infarction. Int. J. Environ. Res. Public Health 2021, 18, 1633. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Jegier, A.; Szalewska, D.; Mawlichanów, A.; Bednarczyk, T.; Eysymont, Z.; Gałaszek, M.; Mamcarz, A.; Mierzynska, A.; Piotrowicz, E.; Piotrowicz, R.; et al. Comprehensive cardiac rehabilitation as the keystone in the secondary prevention of cardiovascular disease. Pol. Heart J. 2021, 79, 901–916. [Google Scholar] [CrossRef] [PubMed]
- Lipiec, P.; Bak, J.; Braksator, W.; Fijałkowski, M.; Gackowski, A.; Gasior, Z.; Kasprzak, J.D.; Klisiewicz, A.; Kowalski, M.; Kukulski, T.; et al. Transthoracic echocardiography in adults—Guidelines of the Working Group on Echocardiography of the Polish Cardiac Society. Pol. Heart J. 2018, 76, 488–493. [Google Scholar] [CrossRef]
- Belikova, M.V.; Kolesnikova, E.E.; Serebrovskaya, T.V. Intermittent hypoxia and experimental Parkinson’s disease. In Intermittent Hypoxia and Human Diseases; Xi, L., Serebrovskaya, T.V., Eds.; Springer: London, UK, 2012; pp. 147–153. [Google Scholar]
- Li, D.; Chen, P.; Zhu, J. The Effects of Interval Training and Continuous Training on Cardiopulmonary Fitness and Exercise Tolerance of Patients with Heart Failure-A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 6761. [Google Scholar] [CrossRef]
- Papathanasiou, J.V.; Petrov, I.; Tokmakova, M.P.; Dimitrova, D.D.; Spasov, L.; Dzhafer, N.S.; Tsekoura, D.; Dionyssiotis, Y.; Ferreira, A.S.; Lopes, A.J.; et al. Group-based cardiac rehabilitation interventions. A challenge for physical and rehabilitation medicine physicians: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2020, 56, 479–488. [Google Scholar] [CrossRef]
- Taylor, J.L.; Holland, D.J.; Keating, S.E.; Leveritt, M.D.; Gomersall, S.R.; Rowlands, A.V.; Bailey, T.G.; Coombes, J.S. Short-term and Long-term Feasibility, Safety, and Efficacy of High-Intensity Interval Training in Cardiac Rehabilitation: The FITR Heart Study Randomized Clinical Trial. JAMA Cardiol. 2020, 5, 1382–1389. [Google Scholar] [CrossRef]
- La Rovere, M.T.; Traversi, E. Role and efficacy of cardiac rehabilitation in patients with heart failure. Monaldi Arch. Chest Dis. 2019, 12, 89. [Google Scholar] [CrossRef]
- Zbinden, R.; Zbinden, S.; Meier, P.; Hutter, D.; Billinger, M.; Wahl, A.; Schmid, J.P.; Windecker, S.; Meier, B.; Seiler, C. Coronary collateral flow in response to endurance exercise training. Eur. J. Cardiovasc. Prev. Rehabil. 2007, 14, 250–257. [Google Scholar] [CrossRef]
- Conway, E.M.; Collen, D.; Carmeliet, P. Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 2001, 49, 507–521. [Google Scholar] [CrossRef] [PubMed]
- Elias, J.; Hoebers, L.P.C.; van Dongen, I.M.; Claessen, B.E.P.M.; Henriques, J.P.S. Impact of collateral circulation on survival in ST-Segment elevation myocardial infarction patients undergoing primary percutaneous coronary intervention with a concomitant chronic total occlusion. J. Am. Coll Cardiol. Cardiovasc. Interv. 2017, 10, 906–914. [Google Scholar] [CrossRef]
- Glazachev, O.; Kopylov, P.; Susta, D.; Dudnik, E.; Zagaynaya, E. Adaptations following an intermittent hypoxia-hyperoxia training in coronary artery disease patients: A controlled study. Clin. Cardiol. 2017, 40, 370–376. [Google Scholar] [CrossRef]
- Faeh, D.; Gutzwiller, F.; Bopp, M. Lower Mortality From Coronary Heart Disease atroke at Higher Altitudes in Switzerland. Circulation 2009, 120, 495–501. [Google Scholar] [CrossRef]
- Richalet, J.P.; Kacimi, R.; Antezana, A.M. The control of cardiac chronotropic function in hypobaric hypoxia. Int. J. Sports Med. 1992, 13 (Suppl. 1), S22–S24. [Google Scholar] [CrossRef]
- Mourot, L. Limitation of Maximal Heart Rate in Hypoxia: Mechanisms and Clinical Importance. Front. Physiol. 2018, 9, 972. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, M.; Pachinger, O.; Ehrenbourg, I.; Mitterbauer, G.; Faulhaber, M.; Puhringer, R.; Tkatchouk, E. Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. Int. J. Cardiol. 2004, 96, 247–254. [Google Scholar] [CrossRef]
- Balady, G.J.; Arena, R.; Sietsema, K.; Myers, J.; Coke, L.; Fletcher, G.F.; Forman, D.; Franklin, B.; Guazzi, M.; Gulati, M.; et al. Clinician’s Guide to cardiopulmonary exercise testing in adults: A scientific statement from the American Heart Association. Circulation 2010, 122, 191–225. [Google Scholar] [CrossRef]
- Corrà, U.; Agostoni, P.G.; Anker, S.D.; Coats, A.J.S.; Leiro, M.G.C.; de Boer, R.A.; Harjola, V.P.; Hill, L.; Lainscak, M.; Lund, L.H.; et al. Role of cardiopulmonary exercise testing in clinical stratification in heart failure. A position paper from the Committee on Exercise Physiology and Training of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 3–15, Erratum in Eur. J. Heart Fail 2018, 20, 1501. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Flather, M.; Coats, A.J.S. Overview of studies of exercise training in chronic heart failure:the need for a prospective randomized multicenter European trial. Eur. Heart J. 1998, 19, 830–841. [Google Scholar] [CrossRef] [PubMed]
- Coats, A.J.S. Exercise rehabilitation in chronic heart failurea. J. Am. Coll. Cardiol. 1993, 22 (Suppl. 1), 172A. [Google Scholar] [CrossRef]
- Fletcher, G.F.; Balady, G.J.; Amsterdam, E.A.; Chaitman, B.; Eckel, R.; Fleg, J.; Froelicher, V.F.; Leon, A.S.; Pia, L.L.; Rodney, R.; et al. Exercise standards for testing and training: A statement for healthcare professionals from the American Heart Association. Circulation 2001, 104, 1694–1740. [Google Scholar] [CrossRef]
- Sadeghi, M.; Garakyaraghi, M.; Khosravi, M.; Taghavi, M.; Sarrafzadegan, N.; Roohafza, H. The impacts of cardiac rehabilitation program on echocardiographic parameters in coronary artery disease patients with left ventricular dysfunction. Cardiol. Res. Pract. 2013, 2013, 201713. [Google Scholar] [CrossRef]
- Haddadzadeh, M.H.; Maiya, A.G.; Padmakumar, R.; Shad, B.; Mirbolouk, F. Effect of exercise-based cardiac rehabilitation on ejection fraction in coronary artery disease patients: A randomized controlled trial. Heart Views 2011, 12, 51–57. [Google Scholar] [CrossRef]
- Farheen, H.; Khalid, Z.; Tariq, M.I.; Sadiq, T.; Amjad, I.; Ramzan, T. Combined effect of aerobic training and interval resistance on ejection fraction in myocardial infarction. J. Coll. Physicians Surg. Pak. 2019, 29, 290–292. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.M.; Li, L.S.; Lam, M.F.; Chung-Wah Siu, D.; Kin-Man Miu, R.; Lau, C.P. Effect of cardiac rehabilitation program on left ventricular diastolic function and its relationship to exercise capacity in patients with coronary heart disease: Experience from a randomised controlled study. Am. Heart J. 2004, 147, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Skaluba, S.J.; Litwin, S.E. Mechanism of exercise intolerance: Insight from tissue Doppler imaging. Circulation 2004, 109, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.Y.; Muthalib, M.; Jubeau, M.; Laursen, P.B.; Nosaka, K. Severe hypoxia affects exercise performance independently of afferent feedback and peripheral fatigue. J. Appl. Physiol. 2012, 112, 1335–1344. [Google Scholar] [CrossRef]

| 2000 m a.s.l. (n = 35) | 3000 m a.s.l. (n = 26) | |
|---|---|---|
| Age years | 60.48 ± 8.54 | 60.30 ± 9.48 |
| STEMI | 16 (45.7%) | 12 (46.15%) |
| NSTEMI | 19 (54.3%) | 14 (53.85%) |
| Number of stents | ||
| 1 stent | 18 (51.4%) | 14 (53.8%) |
| 2 stents | 11 (31.4%) | 9 (34.6%) |
| ≥3 stents | 6 (17.2%) | 3 (11.6%) |
| Parameters | 2000 m a.s l. | p | 3000 m a.s.l. | p | ||
|---|---|---|---|---|---|---|
| time [min] | I | 9.920 ± 1.889 | 0.000 r = 0.735 | I | 9.733 ± 1.944 | 0.000 d = 1.12 |
| II | 11.225 ± 2.297 | II | 11.273 ± 2.344 | |||
| MET [mL/kg/min] | I | 7.734 ± 1.197 | 0.214 | I | 7.857 ± 0.993 | 0.000 r = 0.861 |
| II | 7.954 ± 1.443 | II | 8.565 ± 1.086 | |||
| VE [L/min] | I | 86.611 ± 18.820 | 0.654 | I | 85.615 ± 18.789 | 0.574 |
| II | 87.782 ± 18.874 | II | 88.726 ± 18.230 | |||
| VO2peak [mL/min/kg] | I | 27.060 ± 4.219 | 0.360 | I | 27.533 ± 3.504 | 0.000 d = 0.81 |
| II | 27.622 ± 5.128 | II | 29.069 ± 3.769 | |||
| BF [L/min] | I | 34.388 ± 6.277 | 0.412 | I | 34.569 ± 4.382 | 0.387 |
| II | 35.428 ± 5.221 | II | 35.269 ± 4.834 | |||
| RER | I | 1.161 ± 0.092 | 0.824 | I | 1.069 ± 0.103 | 0.001 r = 0.682 |
| II | 1.165 ± 0.081 | II | 1.008 ± 0.101 | |||
| HRrest [L/min] | I | 71.714 ± 9.122 | 0.094 | I | 69.961 ± 7.738 | 0.527 |
| II | 70.000 ± 8.815 | II | 68.769 ± 6.707 | |||
| HRpeak [L/min] | I | 134.028 ± 14.015 | 0.024 r = 0.467 | I | 136.769 ± 13.706 | 0.020 r = 0.482 |
| II | 138.571 ± 17.293 | II | 139.346 ± 10.673 |
| 2000 m a.s.l. vs. 3000 m a.s.l. | |
|---|---|
| time [min] | p = 0.585 |
| MET [mL/kg/min] | p = 0.018, r = 0.301 |
| VE [L/min] | p = 0.947 |
| VO2peak [mL/min/kg | p = 0.133 |
| BF [L/min] | p = 0.033. r = 0.272 |
| RER | p = 0.024 r = 0.29 |
| HRrest [L/min] | p = 0.619 |
| HRpeak [L/min] | p = 0.502 |
| Parameters | 2000 m a.s.l. | p | 3000 m a.s.l. | p | ||
|---|---|---|---|---|---|---|
| LVEDd [mm] | I | 49.285 ± 4.968 | 0.002 d = 0.55 | I | 50.730 ± 4.911 | 0.004 d = 0.61 |
| II | 45.516 ± 7.546 | II | 48.538 ± 4.658 | |||
| LVESd [mm] | I | 34.314 ± 6.258 | 0.015 d = −0.43 | I | 31.961 ± 6.353 | 0.085 |
| II | 37.285 ± 8.733 | II | 33.576 ± 5.300 | |||
| LVESV [mL] | I | 51.771 ± 13.705 | 0.236 | I | 53.761 ± 18.981 | 0.909 |
| II | 50.114 ± 12.858 | II | 53.519 ± 16.384 | |||
| LVEDV [mL] | I | 105.628 ± 23.173 | 0.416 | I | 105.569 ± 30.050 | 0.638 |
| II | 108.857 ± 25.132 | II | 113.976 ± 25.660 | |||
| LVEF [%] | I | 49.857 ± 6.651 | 0.023 r = 0.42 | I | 53.484 ± 7.082 | 0.857 |
| II | 52.808 ± 8.525 | II | 53.346 ± 7.594 | |||
| Wave E [m/s], | I | 0.646 ± 0.170 | 0.132 | I | 0.630 ± 0.157 | 0.013 r = 0.514 |
| II | 0.680 ± 0.182 | II | 0.717 ± 0.193 | |||
| Wave A [m/s] | I | 0.650 ± 0.160 | 0.616 | I | 0.645 ± 0.240 | 0.137 |
| II | 0.632 ± 0.207 | II | 0.681 ± 0.228 | |||
| e’ lateral [m/s] | I | 0.085 ± 0.021 | 0.063 | I | 0.173 ± 0.182 | 0.594 |
| II | 0.095 ± 0.020 | II | 0.207 ± 0.291 | |||
| e’ septal [m/s] | I | 0.074 ± 0.022 | 0.002 r = 0.627 | I | 0.084 ± 0.022 | 0.013 d = 0.52 |
| II | 0.085 ± 0.021 | II | 0.091 ± 0.023 | |||
| E/E’ | I | 8.375 ± 2.753 | 0.117 | I | 7.958 ± 4.204 | 0.602 |
| II | 7.641 ± 1.940 | II | 8.316 ± 3.308 | |||
| E/A | I | 1.044 ± 0.397 | 0.134 | I | 1.002 ± 0.419 | 0.280 |
| II | 1.192 ± 0.489 | II | 1.095 ± 0.554 | |||
| TAPSE [mm] | I | 21.608 ± 4.015 | 0.587 | I | 24.707 ± 3.586 | 0.465 |
| II | 22.085 ± 5.265 | II | 23.961 ± 3.913 | |||
| MAPSE [mm] | I | 14.371 ± 2.880 | 0.039 r = 0.428 | I | 17.076 ± 3.261 | 0.043 r = 0.421 |
| 2000 m a.s.l. vs. 3000 m a.s.l. | |
|---|---|
| LVEDd [mm] | p = 0.604 |
| LVESd [mm | p = 0.878 |
| LVESV [mL] | p = 0.584 |
| LVEDV [mL] | p = 0.901 |
| LVEF [%] | p = 0.053 |
| Wave E [m/s] | p = 0.303 |
| Wave A [m/s] | p = 0.191 |
| e’ lateral [m/s] | p = 0.161 |
| e’ septal [m/s] | p = 0.726 |
| E/E’ | p = 0.878 |
| E/A | p = 0.142 |
| TAPSE [mm] | p = 0.131 |
| MAPSE [mm] | p = 0.010, r = 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak-Lis, A.; Gabryś, T.; Nowak, Z.; Konarska-Rawluk, A.; Grzybowska-Ganszczyk, D.; Chruściński, R. Normobaric Hypoxic Cardiac Rehabilitation: Comparative Effects of Training at 2000 m and 3000 m Simulated Altitude in Post-Myocardial Infarction Patients. J. Funct. Morphol. Kinesiol. 2025, 10, 444. https://doi.org/10.3390/jfmk10040444
Nowak-Lis A, Gabryś T, Nowak Z, Konarska-Rawluk A, Grzybowska-Ganszczyk D, Chruściński R. Normobaric Hypoxic Cardiac Rehabilitation: Comparative Effects of Training at 2000 m and 3000 m Simulated Altitude in Post-Myocardial Infarction Patients. Journal of Functional Morphology and Kinesiology. 2025; 10(4):444. https://doi.org/10.3390/jfmk10040444
Chicago/Turabian StyleNowak-Lis, Agata, Tomasz Gabryś, Zbigniew Nowak, Anna Konarska-Rawluk, Dominika Grzybowska-Ganszczyk, and Radosław Chruściński. 2025. "Normobaric Hypoxic Cardiac Rehabilitation: Comparative Effects of Training at 2000 m and 3000 m Simulated Altitude in Post-Myocardial Infarction Patients" Journal of Functional Morphology and Kinesiology 10, no. 4: 444. https://doi.org/10.3390/jfmk10040444
APA StyleNowak-Lis, A., Gabryś, T., Nowak, Z., Konarska-Rawluk, A., Grzybowska-Ganszczyk, D., & Chruściński, R. (2025). Normobaric Hypoxic Cardiac Rehabilitation: Comparative Effects of Training at 2000 m and 3000 m Simulated Altitude in Post-Myocardial Infarction Patients. Journal of Functional Morphology and Kinesiology, 10(4), 444. https://doi.org/10.3390/jfmk10040444

