The Effect of a 10-Week Electromyostimulation Intervention with the StimaWELL 120MTRS System on Multifidus Morphology and Function in Chronic Low Back Pain Patients: A Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Recruitment
2.2. Inclusion Criteria
- Chronic non-specific LBP (>3 months), defined as pain in the region between the lower ribs and gluteal folds, with or without leg pain.
- Aged between 18 and 60 years old.
- English or French speakers.
- Have at least score of ‘moderate’ on the Modified Oswestry Disability Index (ODI).
- Able to undergo MRI exam.
2.3. Exclusion Criteria
- Currently undergoing or having received physical therapy treatment in the previous month.
- Consistent motor control training for the low back and/or consistent weightlifting, powerlifting, bodybuilding, or strongman training in the previous 6 weeks.
- History of lumbar surgery.
- Presence of positive lumbosacral dermatomes or myotomes.
- Presence of disease which could affect the stiffness of muscle tissue (collagen tissue disease, hemiplegia, multiple sclerosis, blood clots).
- Presence of systemic disease (cancer, metabolic syndrome).
- Presence of spinal abnormality (spinal stenosis, fracture, infection, tumor, or lumbar scoliosis greater than 10 degrees).
- BMI > 30.
- Presence of cardiac arrhythmia.
- Pregnant and breastfeeding women.
- Individuals with epilepsy.
- Individuals at risk of serious bleeding.
- Individuals with pacemakers or metal implants.
- Individuals with aneurysms or heart valve clips.
- Individuals who have taken prescribed muscle relaxants more than once a week in the previous month.
2.4. Setting and Randomization
2.5. Intervention
2.6. Outcome Measures
2.7. Timeline
2.8. Sample Size Calculation and Statistical Analysis
3. Results
Adverse Events
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoy, D.; Bain, C.; Williams, G.; March, L.; Brooks, P.; Blyth, F.; Woolf, A.; Vos, T.; Buchbinder, R. A systematic review of the global prevalence of low back pain. Arthritis Rheum. 2012, 64, 2028–2037. [Google Scholar] [CrossRef]
- GBD 2021 Low Back Pain Collaborators. Global, regional, and national burden of low back pain, 1990–2020, its attributable risk factors, and projections to 2050: A systematic analysis of the global burden of disease study 2021. Lancet Rheumatol. 2023, 5, e316–e329. [Google Scholar] [CrossRef]
- Seyedhoseinpoor, T.; Taghipour, M.; Dadgoo, M.; Sanjari, M.A.; Takamjani, I.E.; Kazemnejad, A.; Khoshamooz, Y.; Hides, J. Alteration of lumbar muscle morphology and composition in relation to low back pain: A systematic review and meta-analysis. Spine J. 2022, 22, 660–676. [Google Scholar] [CrossRef] [PubMed]
- Wallwork, T.L.; Stanton, W.R.; Freke, M.; Hides, J.A. The effect of chronic low back pain on size and contraction of the lumbar multifidus muscle. Man. Ther. 2009, 14, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Bogduk, N.; Macintosh, J.E.; Pearcy, M.J. A universal model of the lumbar back muscles in the upright position. Spine 1992, 17, 897–913. [Google Scholar] [CrossRef]
- Rummens, S.; Robben, E.; De Groef, A.; Van Wambeke, P.; Janssens, L.; Brumagne, S.; Desloovere, K.; Peers, K. Factors associated with the ultrasound characteristics of the lumbar multifidus: A systematic review. PM&R 2020, 12, 82–100. [Google Scholar]
- Zhang, S.; Xu, Y.; Han, X.; Wu, W.; Tang, Y.; Wang, C. Functional and morphological changes in the deep lumbar multifidus using electromyography and ultrasound. Sci. Rep. 2018, 8, 6539. [Google Scholar] [CrossRef]
- Koppenhaver, S.; Gaffney, E.; Oates, A.; Eberle, L.; Young, B.; Hebert, J.; Proulx, L.; Shinohara, M. Lumbar muscle stiffness is different in individuals with low back pain than asymptomatic controls and is associated with pain and disability, but not common physical examination findings. Musculoskelet. Sci. Pract. 2020, 45, 102078. [Google Scholar] [CrossRef]
- Masaki, M.; Aoyama, T.; Murakami, T.; Yanase, K.; Ji, X.; Tateuchi, H.; Ichihashi, N. Association of low back pain with muscle stiffness and muscle mass of the lumbar back muscles, and sagittal spinal alignment in young and middle-aged medical workers. Clin. Biomech. 2017, 49, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Murillo, C.; Falla, D.; Rushton, A.; Sanderson, A.; Heneghan, N.R. Shear wave elastography investigation of multifidus stiffness in individuals with low back pain. J. Electromyogr. Kinesiol. 2019, 47, 19–24. [Google Scholar] [CrossRef]
- Danneels, L.A.; Coorevits, P.L.; Cools, A.M.; Vanderstraeten, G.G.; Cambier, D.C.; Witvrouw, E.E.; De, C.H. Differences in electromyographic activity in the multifidus muscle and the iliocostalis lumborum between healthy subjects and patients with sub-acute and chronic low back pain. Eur. Spine J. 2002, 11, 13–19. [Google Scholar] [CrossRef]
- Airaksinen, O.; Brox, J.I.; Cedraschi, C.; Hildebrandt, J.; Klaber-Moffett, J.; Kovacs, F.; Mannion, A.F.; Reis, S.; Staal, J.B.; Ursin, H.; et al. COST B13 Working Group on Guidelines for Chronic Low Back Pain. Chapter 4. European guidelines for the management of chronic nonspecific low back pain. Eur. Spine J. 2006, 15 (Suppl. 2), S192–S300. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, R.; Álvarez-Bueno, C.; Cavero-Redondo, I.; Torres-Costoso, A.; Pozuelo-Carrascosa, D.P.; Reina-Gutiérrez, S.; Pascual-Morena, C.; Martínez-Vizcaíno, V. Best exercise options for reducing pain and disability in adults with chronic low back pain: Pilates, strength, core-based, and mind-body. A network meta-analysis. J. Orthop. Sports Phys. Ther. 2022, 52, 505–521. [Google Scholar] [CrossRef]
- Fortin, M.; Rye, M.; Roussac, A.; Montpetit, C.; Burdick, J.; Naghdi, N.; Rosenstein, B.; Bertrand, C.; Macedo, L.G.; Elliott, J.M.; et al. The effects of combined motor control and isolated extensor strengthening versus general exercise on paraspinal muscle morphology, composition, and function in patients with chronic low back pain: A randomized controlled trial. J. Clin. Med. 2023, 12, 5920. [Google Scholar] [CrossRef]
- Chou, R.; Shekelle, P. Will this patient develop persistent disabling low back pain? JAMA 2010, 303, 1295–1302. [Google Scholar] [CrossRef]
- Knight, K.L.; Draper, D.O. Application procedures: Electrotherapy. In Therapeutic Modalities: The Art and Science, 2nd ed.; Lippincott Williams & Williams: Baltimore, PA, USA, 2013; pp. 339–346. [Google Scholar]
- Rampazo, E.P.; Liebano, R.E. Analgesic effects of interferential current therapy: A narrative review. Medicina 2022, 58, 141. [Google Scholar] [CrossRef] [PubMed]
- Sillen, M.J.H.; Franssen, F.M.E.; Gosker, H.R.; Wouters, E.F.; Spruit, M.A. Metabolic and structural changes in lower-limb skeletal muscle following neuromuscular electrical stimulation: A systematic review. PLoS ONE 2013, 8, e69391. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, D.; Rosenstein, B.; Fortin, M. The effect of transcutaneous electrotherapy on lumbar range of motion and paraspinal muscle characteristics in chronic low back pain patients: A systematic review and meta-analysis. J. Clin. Med. 2023, 12, 4680. [Google Scholar] [CrossRef] [PubMed]
- Linzmeyer, A.; Coracini, C.A.; Bertolini, G.R.F.; Carvalho, A.R. Effect of neuromuscular electrical stimulation on muscle function in chronic low back pain patients: Systematic review. Braz. J. Pain 2022, 5, 161–167. [Google Scholar] [CrossRef]
- Batistella, C.E.; Bidin, F.; Giacomelli, I.; Nunez, M.A.; Gasoto, E.; Albuquerque, C.E.; Flores, L.J.F.; Bertolini, G.R.F. Effects of the Russian current in the treatment of low back pain in women: A randomized clinical trial. J. Bodyw. Mov. Ther. 2020, 24, 118–122. [Google Scholar] [CrossRef]
- Coghlan, S.; Crowe, L.; McCarthyPersson, U.; Minogue, C.; Caulfield, B. Neuromuscular electrical stimulation training results in enhanced activation of spinal stabilizing muscles during spinal loading and improvements in pain ratings. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; IEEE: Boston, MA, USA, 2011; pp. 3266–3269. [Google Scholar]
- Pelegrini, A.C.A.; Gasoto, E.; Bussolaro, J.M.; Segatti, G.; de Albuquerque, C.E.; Bertolini, G.R.F. The analgesic action of Aussie current in women with non-specific chronic lumbar pain. Int. J. Ther. Rehabil. 2019, 26, 1–10. [Google Scholar] [CrossRef]
- Baek, S.O.; Ahn, S.H.; Jones, R.; Cho, H.K.; Jung, G.S.; Cho, Y.W.; Tak, H.J. Activations of deep lumbar stabilizing muscles by transcutaneous neuromuscular electrical stimulation of lumbar paraspinal regions. Ann. Rehabil. Med. 2014, 38, 506. [Google Scholar] [CrossRef]
- Fortin, M.; Wolfe, D.; Dover, G.; Boily, M. The effect of phasic versus combined neuromuscular electrical stimulation using the StimaWELL 120MTRS system on multifidus muscle morphology and function in patients with chronic low back pain: A randomized controlled trial protocol. BMC Musculoskelet. Disord. 2022, 23, 627. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, D.A.; Moseley, G.L.; Hodges, P.W. The lumbar multifidus: Does the evidence support clinical beliefs? Man. Ther. 2006, 11, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Fortin, M.; Battié, M.C. Quantitative paraspinal muscle measurements: Inter-software reliability and agreement using OsiriX and ImageJ. Phys. Ther. 2012, 92, 853–864. [Google Scholar] [CrossRef]
- Crawford, R.J.; Filli, L.; Elliott, J.M.; Nanz, D.; Fischer, M.A.; Marcon, M.; Ulbrich, E.J. Age- and level-dependence of fatty infiltration in lumbar paravertebral muscles of healthy volunteers. AJNR Am. J. Neuroradiol. 2016, 37, 742–748. [Google Scholar] [CrossRef]
- Larivière, C.; Gagnon, D.; De Oliveira, E., Jr.; Henry, S.M.; Mecheri, H.; Dumas, J.P. Ultrasound measures of the lumbar multifidus: Effect of task and transducer position on reliability. PM&R 2013, 5, 678–687. [Google Scholar] [CrossRef]
- Kiesel, K.B.; Uhl, T.L.; Underwood, F.B.; Rodd, D.W.; Nitz, A.J. Measurement of lumbar multifidus muscle contraction with rehabilitative ultrasound imaging. Man. Ther. 2007, 12, 161–166. [Google Scholar] [CrossRef]
- Koppenhaver, S.; Kniss, J.; Lilley, D.; Oates, M.; Fernández-de-Las-Peñas, C.; Maher, R.; Croy, T.; Shinohara, M. Reliability of ultrasound shear-wave elastography in assessing low back musculature elasticity in asymptomatic individuals. J. Electromyogr. Kinesiol. 2018, 39, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.P.; Koppenhaver, S.L.; Michener, L.A.; Proulx, L.; Bisagni, F.; Cleland, J.A. Characterization of tissue stiffness of the infraspinatus, erector spinae, and gastrocnemius muscle using ultrasound shear wave elastography and superficial mechanical deformation. J. Electromyogr. Kinesiol. 2018, 38, 73–80. [Google Scholar] [CrossRef]
- Childs, J.D.; Piva, S.R.; Fritz, J.M. Responsiveness of the numeric pain rating scale in patients with low back pain. Spine 2005, 30, 1331–1334. [Google Scholar] [CrossRef]
- Ostelo, R.W.J.G.; Deyo, R.A.; Stratford, P.; Waddell, G.; Croft, P.; Von Korff, M.; Bouter, L.M.; de Vet, H.C. Interpreting change scores for pain and functional status in low back pain: Towards international consensus regarding minimal important change. Spine 2008, 33, 90–94. [Google Scholar] [CrossRef]
- Osman, A.; Barrios, F.X.; Gutierrez, P.M.; Kopper, B.A.; Merrifield, T.; Grittmann, L. The pain catastrophizing scale: Further psychometric evaluation with adult samples. J. Behav. Med. 2000, 23, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Vanderthommen, M.; Duchateau, J. Electrical stimulation as a modality to improve performance of the neuromuscular system. Exerc. Sport. Sci. Rev. 2007, 35, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Sions, J.M.; Crippen, D.J.C.; Hicks, G.E.; Alroumi, A.M.; Manal, T.J.; Pohlig, R.T. Exploring neuromuscular electrical stimulation intensity effects on multifidus muscle activity in adults with chronic low back pain: An ultrasound imaging–informed investigation. Clin. Med. Insights 2019, 12, 117954411984957. [Google Scholar] [CrossRef] [PubMed]
- Songjaroen, S.; Sungnak, P.; Piriyaprasarth, P.; Wang, H.K.; Laskin, J.J.; Wattananon, P. Combined neuromuscular electrical stimulation with motor control exercise can improve lumbar multifidus activation in individuals with recurrent low back pain. Sci. Rep. 2021, 11, 14815. [Google Scholar] [CrossRef]
- Doucet, B.M.; Lam, A.; Griffin, L. Neuromuscular electrical stimulation for skeletal muscle function. Yale J. Biol. Med. 2012, 85, 201–215. [Google Scholar]
- Jandova, T.; Narici, M.V.; Steffl, M.; Bondi, D.; D’Amico, M.; Pavlu, D.; Verratti, V.; Fulle, S.; Pietrangelo, T. Muscle hypertrophy and architectural changes in response to eight-week neuromuscular electrical stimulation training in healthy older people. Life 2020, 10, 184. [Google Scholar] [CrossRef]
- Balthazard, L.; Wolfe, D.; Fortin, M. Effect of neuromuscular electrical stimulation therapy using the StimaWELL 120MTRS system on erector spinae morphology in patients with chronic low back pain. Front. Musculoskelet. Disord. 2023, 1, 1240331. [Google Scholar] [CrossRef]
- Dieterich, A.V.; Yavuz, U.Ş.; Petzke, F.; Nordez, A.; Falla, D. Neck muscle stiffness measured with shear wave elastography in women with chronic nonspecific neck pain. J. Orthop. Sports Phys. Ther. 2020, 50, 179–188. [Google Scholar] [CrossRef]
- Tornblom, A.; Naghdi, N.; Rye, M.; Montpetit, C.; Fortin, M. The effects of a 12-week combined motor control exercise and isolated lumbar extension intervention on lumbar multifidus muscle stiffness in individuals with chronic low back pain. Front. Physiol. 2024, 15, 1336544. [Google Scholar] [CrossRef]
- Suzuki, H.; Aono, S.; Inoue, S.; Imajo, Y.; Nishida, N.; Funaba, M.; Harada, H.; Mori, A.; Matsumoto, M.; Higuchi, F.; et al. Clinically significant changes in pain along the Pain Intensity Numerical Rating Scale in patients with chronic low back pain. PLoS ONE 2020, 15, e0229228. [Google Scholar] [CrossRef]
- Dimer da Luz, R.; da Silva Santos, M.; Steffen Evaldt, A.; da Silva Matos, L.; Boff Daitx, R.; Döhner, M.B. Neuromuscular electrical stimulation associated with core stability exercises in nonspecific postural low back pain: A randomized clinical trial. Muscles Ligaments Tendons J. 2019, 9, 446–456. [Google Scholar] [CrossRef]
- Fuentes, J.; Armijo-Olivo, S.; Funabashi, M.; Miciak, M.; Dick, B.; Warren, S.; Rashiq, S.; Magee, D.J.; Gross, D.P. Enhanced therapeutic alliance modulates pain intensity and muscle pain sensitivity in patients with chronic low back pain: An experimental controlled study. Phys. Ther. 2014, 94, 477–489. [Google Scholar] [CrossRef]
- Schwind, J.; Learman, K.; O’Halloran, B.; Showalter, C.; Cook, C. Different minimally important clinical difference (MCID) scores lead to different clinical prediction rules for the Oswestry disability index for the same sample of patients. J. Man. Manip. Ther. 2013, 21, 71–78. [Google Scholar] [CrossRef]
- Song, C.Y.; Chen, C.H.; Chen, T.W.; Chiang, H.Y.; Hsieh, C.L. Assessment of low back pain: Reliability and minimal detectable change of the Brief Pain Inventory. Am. J. Occup. Ther. 2022, 76, 7603205040. [Google Scholar] [CrossRef]
- Monticone, M.; Portoghese, I.; Rocca, B.; Giordano, A.; Campagna, M.; Franchignoni, F. Responsiveness and minimal important change of the Pain Catastrophizing Scale in people with chronic low back pain undergoing multidisciplinary rehabilitation. Eur. J. Phys. Rehabil. Med. 2022, 58, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Neuwersch, S.; Kostenberger, M.; Pipam, W.; Breschan, C.; Stettner, H.; Demschar, S.; Trummer, B.; Likar, R. Elektrische Muskelstimulation in Kombination mit Wärme bei Patienten mit chronischen unspezifischen Rückenschmerzen. Schmerz 2020, 34, 65–73. [Google Scholar]
- Naka, A.; Kotz, C.; Gutmann, E.; Pramhas, S.; Schukro, R.P.J.; Ristl, R.; Schuhfried, O.; Crevenna, R.; Sator, S. Effect of regular electrotherapy on spinal flexibility and pain sensitivity in patients with chronic non-specific neck pain and low back pain: A randomized controlled double-blinded pilot trial. Medicina 2023, 59, 823. [Google Scholar] [CrossRef]
- Yakşi, E.; Ketenci, A.; Baslo, M.B.; Orhan, E.K. Does transcutaneous electrical nerve stimulation affect pain, neuropathic pain, and sympathetic skin responses in the treatment of chronic low back pain? A randomized, placebo-controlled study. Korean J. Pain. 2021, 34, 217–228. [Google Scholar] [CrossRef]
- Kofotolis, N.D.; Vlachopoulos, S.P.; Kellis, E. Sequentially allocated clinical trial of rhythmic stabilization exercises and TENS in women with chronic low back pain. Clin. Rehabil. 2008, 22, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Topuz, O.; Özfidan, E.; Ozgen, M.; Ardic, F. Efficacy of transcutaneous electrical nerve stimulation and percutaneous neuromodulation therapy in chronic low back pain. J. Back. Musculoskelet. Rehabil. 2004, 17, 127–133. [Google Scholar] [CrossRef]
- Guo, P.; Wang, J.W.; Tong, A. Therapeutic effectiveness of neuromuscular electrical stimulation for treating patients with chronic low back pain. Medicine 2018, 9, e13197. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, D.; Rosenstein, B.; Fortin, M. The effect of EMS, IFC, and TENS on patient-reported outcomes for chronic low back pain: A systematic review and meta-analysis. Front. Pain. Res. 2024, 5, 1346694. [Google Scholar] [CrossRef]





| Combined Group (n = 13) | Phasic Group (n = 15) | Significance | |
|---|---|---|---|
| Sex | 4 male; 9 female | 7 male; 8 female | 0.390 & |
| Age (yrs) | 41.0 ± 13.8 | 42.0 ± 12.3 | 0.853 ^ |
| BMI | 23.7 ± 3.1 | 24.9 ± 3.1 | 0.343 ^ |
| Duration of LBP (months) | 133.2 ± 116.2 | 79.4 ± 81.9 | 0.164 ^ |
| Combined Group (n = 13) | Phasic Group (n = 15) | Between-Group Difference (Combined Minus Phasic) | |
|---|---|---|---|
| L4 level | |||
| Right Pre | 8.25 ± 1.77 | 9.56 ± 2.24 | 0.51 [−0.15, 1.18], p = 0.123 ^ 0.586 |
| Right Post | 8.74 ± 1.50 | 9.54 ± 2.32 | |
| Difference (post-pre) | 0.49 [−0.05, 1.03], p = 0.072 a | −0.02 [−0.47, 0.42], p = 0.907 a | |
| Effect Size (Hedge’s g) | 0.513 | −0.029 | |
| Left Pre | 8.38 ± 1.38 | 9.50 ± 1.89 | NA, p = 0.316 # |
| Left Post | 8.71 ± 1.43 | 9.37 ± 1.8 | |
| Difference (post-pre) | 0.33 [−0.31, 0.98] p = 0.221 $ | −0.13 [−0.51, 0.25], p = 0.472 a | |
| Effect Size (Hedge’s g) | NA | −0.181 | |
| L5 level | |||
| Right Pre | 10.28 ± 1.59 | 11.32 ± 2.85 | NA, p = 0.294 # |
| Right Post | 10.44 ± 1.75 | 11.05 ± 2.56 | |
| Difference (post-pre) | 0.15 [−0.22, 0.54], p = 0.463 $ | −0.27 [−0.72, 0.17], p = 0.213 a | |
| Effect Size (Hedge’s g) | NA | −0.318 | |
| Left Pre | 10.39 ± 2.09 | 11.20 ± 2.36 | NA, p = 0.217 # |
| Left Post | 10.53 ± 2.10, p = 0.256 | 10.95 ± 2.22 | |
| Difference (post-pre) | 0.14 [−0.11, 0.39], p = 0.256 a | −0.25 [−0.73, 0.23], p = 0.363 $ | |
| Effect Size (Hedge’s g) | 0.310 | NA | |
| Combined Group (n = 13) | Phasic Group (n = 15) | Between-Group Difference (Combined Minus Phasic) | |
|---|---|---|---|
| L4 level | |||
| Right Pre | 20.22 ± 9.26 | 21.84 ± 8.9 | NA, p = 0.717 # |
| Right Post | 20.18 ± 8.60 | 21.96 ± 9.49 | |
| Difference (post-pre) | −0.03 [−1.51, 1.43], p = 0.422 $ | 0.11 [−0.88, 1.11], p = 0.804 a | |
| Effect Size (Hedge’s g) | NA | 0.062 | |
| Left Pre | 21.48 ± 10.82 | 23.40 ± 8.82 | −2.05 [−4.12, 0.15], p = 0.052 ^ −0.750 |
| Left Post | 19.82 ± 9.08 | 23.79 ± 8.97 | |
| Difference (post-pre) | −1.65 [−3.46, 0.15], p = 0.069 a | 0.39 [−0.89, 1.69], p = 0.520 a | |
| Effect Size (Hedge’s g) | −0.518 | 0.161 | |
| L5 level | |||
| Right Pre | 24.86 ± 10.29 | 26.34 ± 9.93 | NA, p = 0.586 # |
| Right Post | 24.10 ± 9.59 | 25.94 ± 10.31 | |
| Difference (post-pre) | −0.76 [−2.02, 0.49], p = 0.210 a | −0.39 [−2.36, 1.56], p = 0.394 $ | |
| Effect Size (Hedge’s g) | −0.343 | NA | |
| Left Pre | 24.55 ± 11.01 | 27.11 ± 8.23 | NA, p = 0.170 # |
| Left Post | 23.04 ± 9.43 | 26.89 ± 8.73 | |
| Difference (post-pre) | −1.51 [−2.79, −0.23], p = 0.024 a | −0.21 [−1.23, 0.79], p = 0.363 $ | |
| Effect Size (Hedge’s g) | −0.669 | NA | |
| Variable | Measurement Timepoint | Phasic Group (n = 15) | Combined Group (n = 13) | Main Effect of Group | Interaction Effect of Group * Time |
|---|---|---|---|---|---|
| Average LBP | Baseline | 4.97 ± 1.05 | 4.97 ± 1.51 | F = 0.477, p = 0.496, df = 1 η2 = 0.018 | F = 0.971, p = 0.385, df = 2 η2 = 0.036 |
| 6-week | 3.79 ± 1.31 y | 4.05 ± 1.54 y | |||
| 11-week | 2.57 ± 0.93 xz | 3.25 ± 1.58 xz | |||
| Main Effect of Time | F = 19.522, p < 0.001, df = 2 η2 = 0.610 | F = 8.115, p = 0.002, df = 2 η2 = 0.394 | |||
| LBP with Motion | Baseline | 4.46 ± 2.29 | 4.61 ± 1.85 | F = 0.126, p = 0.725, df = 1 η2 = 0.005 | F = 0.875, p = 0.396, df = 1.482 η2 = 0.033 |
| 6-week | 3.40 ± 1.99 | 3.15 ± 1.99 y | |||
| 11-week | 2.06 ± 1.38 xz | 2.76 ± 1.42 x | |||
| Main Effect of Time | F = 13.395, p < 0.001, df = 2 η2 = 0.517 | F = 4.517, p = 0.021, df = 2 η2 = 0.265 | |||
| LBP with Sitting | Baseline | 5.60 ± 1.54 | 4.53 ± 2.25 | F = 0.001, p = 0.981, df = 1 η2 = 0.000 | F = 4.271, p = 0.019, df = 2 η2 = 0.141 |
| 6-week | 3.86 ± 2.06 y | 4.07 ± 2.21 | |||
| 11-week | 2.33 ± 1.44 xz | 3.23 ± 2.16 x | |||
| Main Effect of Time | F = 24.411, p < 0.001, df = 2 η2 = 0.661 | F = 3.424, p = 0.056, df = 2 η2 = 0.206 | |||
| Leg Pain | Baseline | 2.46 ± 2.61 | 1.07 ± 2.01 | F = 1.992, p = 0.170, df = 1 η2 = 0.071 | F = 1.809, p = 0.174, df = 2 η2 = 0.065 |
| 6-week | 2.46 ± 2.72 | 1.0 ± 1.35 | |||
| 11-week | 1.53 ± 2.03 z | 1.38 ± 2.14 | |||
| Main Effect of Time | F = 2.334, p = 0.118, df = 2 η2 = 0.157 | F = 0.317, p = 0.731, df = 2 η2 = 0.025 | |||
| ODI (%) | Baseline | 26.27 ± 8.13 | 26 ± 6.92 | F = 1.363, p = 0.254, df = 1 η2 = 0.050 | F = 2.740, p = 0.092, df = 1.46 η2 = 0.095 |
| 6-week | 19.93 ± 9.46 y | 24.31 ± 5.93 | |||
| 11-week | 15.73 ± 10.4 xz9 | 21.31 ± 7.697 | |||
| Main Effect of Time | F = 12.459, p < 0.001, df = 2 η2 = 0.499 | F = 1.817, p = 0.183, df = 2 η2 = 0.127 | |||
| BPI | Baseline | 3.99 ± 2.05 | 2.52 ± 1.75 | F = 1.167, p = 0.29, df = 1 η2 = 0.045 | F = 4.054, p = 0.032, df = 1.617 η2 = 0.140 |
| 6-week | 2.45 ± 1.44 y | 1.84 ± 1.20 | |||
| 11-week | 1.72 ±1.49 x5 | 2.06 ± 1.976 | |||
| Main Effect of Time | F = 9.221, p = 0.001, df = 2 η2 = 0.435 | F = 1.412, p = 0.26, df = 2 η2 = 0.106 | |||
| PCS | Baseline | 17.73 ± 11.39 | 18.3 ± 10.32 | F = 0.740, p = 0.397, df = 1 η2 = 0.028 | F = 0.823, p = 0.403, df = 1.327 η2 = 0.031 |
| 6-week | 11.33 ± 8.15 y | 15.38 ± 11.14 | |||
| 11-week | 9.73 ± 7.39 x | 13.61 ± 10.44 | |||
| Main Effect of Time | F = 4.685, p = 0.019, df = 2 η2 = 0.273 | F = 1.603, p = 0.221, df = 2 η2 = 0.114 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolfe, D.; Rosenstein, B.; Dover, G.; Boily, M.; Fortin, M. The Effect of a 10-Week Electromyostimulation Intervention with the StimaWELL 120MTRS System on Multifidus Morphology and Function in Chronic Low Back Pain Patients: A Randomized Controlled Trial. J. Funct. Morphol. Kinesiol. 2025, 10, 443. https://doi.org/10.3390/jfmk10040443
Wolfe D, Rosenstein B, Dover G, Boily M, Fortin M. The Effect of a 10-Week Electromyostimulation Intervention with the StimaWELL 120MTRS System on Multifidus Morphology and Function in Chronic Low Back Pain Patients: A Randomized Controlled Trial. Journal of Functional Morphology and Kinesiology. 2025; 10(4):443. https://doi.org/10.3390/jfmk10040443
Chicago/Turabian StyleWolfe, Daniel, Brent Rosenstein, Geoffrey Dover, Mathieu Boily, and Maryse Fortin. 2025. "The Effect of a 10-Week Electromyostimulation Intervention with the StimaWELL 120MTRS System on Multifidus Morphology and Function in Chronic Low Back Pain Patients: A Randomized Controlled Trial" Journal of Functional Morphology and Kinesiology 10, no. 4: 443. https://doi.org/10.3390/jfmk10040443
APA StyleWolfe, D., Rosenstein, B., Dover, G., Boily, M., & Fortin, M. (2025). The Effect of a 10-Week Electromyostimulation Intervention with the StimaWELL 120MTRS System on Multifidus Morphology and Function in Chronic Low Back Pain Patients: A Randomized Controlled Trial. Journal of Functional Morphology and Kinesiology, 10(4), 443. https://doi.org/10.3390/jfmk10040443

