From Science to Dressing Room: Dietary Supplements for Elite Soccer Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Study Selection
2.2. Practitioner Recruitment and Survey Methodology
3. Results
3.1. Caffeine
3.2. Beta-Alanine
3.3. Creatine
3.4. Sodium Bicarbonate
3.5. Dietary Nitrate
3.6. Glycerol
3.7. Protein
3.8. Tart Cherry
3.9. Translating Evidence into Practice: Insights from Practitioner Survey
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Br. J. Sports Med. 2018, 52, 439–455. [Google Scholar] [CrossRef]
- Abreu, R.; Oliveira, C.B.; Costa, J.A.; Brito, J.; Teixeira, V.H. Effects of dietary supplements on athletic performance in elite soccer players: A systematic review. J. Int. Soc. Sports Nutr. 2023, 20, 2236060. [Google Scholar] [CrossRef]
- Collins, J.; Maughan, R.J.; Gleeson, M.; Bilsborough, J.; Jeukendrup, A.; Morton, J.P.; Phillips, S.M.; Armstrong, L.; Burke, L.M.; Close, G.L.; et al. UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. Br. J. Sports Med. 2021, 55, 416. [Google Scholar] [CrossRef]
- Pedrinelli, A.; Ejnisman, L.; Fagotti, L.; Dvorak, J.; Tscholl, P.M. Medications and nutritional supplements in athletes during the 2000, 2004, 2008 and 2012 FIFA Futsal World Cups. BioMed Res. Int. 2015, 2015, 870308. [Google Scholar] [CrossRef]
- Aljaloud, S.O.; Ibrahim, S.A. Use of dietary supplements among professional athletes in Saudi Arabia. J. Nutr. Metab. 2013, 2013, 245349. [Google Scholar] [CrossRef]
- Günalan, E.; Çavak, B.Y.; Turhan, S.; Cebioğlu, İ.K.; Domínguez, R.; Sánchez-Oliver, A.J. Dietary supplement use in Turkish footballers: Differences by sex and competition level. Nutrients 2022, 14, 3863. [Google Scholar] [CrossRef]
- Bangsbo, J. Performance in sports—With specific emphasis on the effect of intensified training. Scand. J. Med. Sci. Sports 2015, 25, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Bradley, P.S. Setting the Benchmark’ Part 1: The Contextualised Physical Demands of Positional Roles in the FIFA World Cup Qatar 2022. Biol. Sport 2024, 41, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Larkin, P.; Mesagno, C.; Berry, J.; Spittle, M.; Harvey, J. Video-based training to improve perceptual-cognitive decision-making performance of Australian football umpires. J. Sports Sci. 2018, 36, 239–246. [Google Scholar] [CrossRef]
- de Almeida, R.F.; de Oliveira, M.; Furigo, I.C.; Aquino, R.; Clarke, N.D.; Tallis, J.; Guimaraes-Ferreira, L. Effects of Acute Caffeine Ingestion on Cognitive Performance before and after Repeated Small-Sided Games in Professional Soccer Players: A Placebo-Controlled, Randomized Crossover Trial. Nutrients 2023, 15, 3094. [Google Scholar] [CrossRef]
- Hostrup, M.; Bangsbo, J. Performance Adaptations to Intensified Training in Top-Level Football. Sports Med. 2023, 53, 577–594. [Google Scholar] [CrossRef] [PubMed]
- Kerksick, C.M.; Arent, S.; Schoenfeld, B.J.; Stout, J.R.; Campbell, B.; Wilborn, C.D.; Taylor, L.; Kalman, D.; Smith-Ryan, A.E.; Kreider, R.B.; et al. International society of sports nutrition position stand: Nutrient timing. J. Int. Soc. Sports Nutr. 2017, 14, 33. [Google Scholar] [CrossRef]
- Wenger, A. Importance of nutrition in football: The coach’s perspective. Br. J. Sports Med. 2021, 55, 409. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Shrier, I.; McLaren, S.J.; Coutts, A.J.; McCall, A.; Slattery, K.; Jeffries, A.C.; Kalkhoven, J.T. Understanding Training Load as Exposure and Dose. Sports Med. 2023, 53, 1667–1679. [Google Scholar] [CrossRef]
- Anderson, L.; Drust, B.; Close, G.L.; Morton, J.P. Physical loading in professional soccer players: Implications for contemporary guidelines to encompass carbohydrate periodization. J. Sports Sci. 2022, 40, 1000–1019. [Google Scholar] [CrossRef]
- Garthe, I.; Maughan, R.J. Athletes and supplements: Prevalence and perspectives. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 126–138. [Google Scholar] [CrossRef]
- Sebastiá-Rico, J.; Martínez-Sanz, J.M.; Sanchis-Chordà, J.; Alonso-Calvar, M.; López-Mateu, P.; Romero-García, D.; Soriano, J.M. Supplement Consumption by Elite Soccer Players: Differences by Competitive Level, Playing Position, and Sex. Healthcare 2024, 12, 496. [Google Scholar] [CrossRef]
- Porrini, M.; Del Bo’, C. Ergogenic Aids and Supplements. Front. Horm. Res. 2016, 47, 128–152. [Google Scholar] [CrossRef]
- Senefeld, J.W.; Wiggins, C.C.; Regimbal, R.J.; Dominelli, P.B.; Baker, S.E.; Joyner, M.J. Ergogenic Effect of Nitrate Supplementation: A Systematic Review and Meta-analysis. Med. Sci. Sports Exerc. 2020, 52, 2250–2261. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [CrossRef] [PubMed]
- Valiño-Marques, A.; Lamas, A.; Miranda, J.M.; Cepeda, A.; Regal, P. Nutritional ergogenic aids in cycling: A systematic review. Nutrients 2024, 16, 1768. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Green, B.N.; Johnson, C.D.; Adams, A. Writing narrative literature reviews for peer-reviewed journals: Secrets of the trade. J. Chiropr. Med. 2006, 5, 101–117. [Google Scholar] [CrossRef]
- Ferrari, R. Writing narrative style literature reviews. Med. Writ. 2015, 24, 230–235. [Google Scholar] [CrossRef]
- Cappelletti, S.; Daria, P.; Sani, G.; Aromatario, M. Caffeine: Cognitive and physical performance enhancer or psychoactive drug? Curr. Neuropharmacol. 2015, 13, 71–88. [Google Scholar] [CrossRef]
- Martins, G.L.; Guilherme, J.P.L.F.; Ferreira, L.H.B.; de Souza-Junior, T.P.; Lancha, A.H. Caffeine and Exercise Performance: Possible Directions for Definitive Findings. Front. Sports Act. Living 2020, 2, 574854. [Google Scholar] [CrossRef]
- Foskett, A.; Ali, A.; Gant, N. Caffeine enhances cognitive function and skill performance during simulated soccer activity. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 410–423. [Google Scholar] [CrossRef]
- Jr, M.A.G.; Caldas, L.C.; De Souza, H.L.; Vitzel, K.F.; Cholewa, J.M.; Duncan, M.J.; Guimarães-Ferreira, L. The acute effects of plyometric and sled towing stimuli with and without caffeine ingestion on vertical jump performance in professional soccer players. J. Int. Soc. Sports Nutr. 2018, 15, 51. [Google Scholar] [CrossRef]
- Nakamura, D.; Tanabe, Y.; Arimitsu, T.; Hasegawa, H.; Takahashi, H. Low caffeine dose improves intermittent sprint performance in hot and humid environments. J. Therm. Biol. 2020, 93, 102698. [Google Scholar] [CrossRef] [PubMed]
- Ranchordas, M.K.; King, G.; Russell, M.; Lynn, A.; Russell, M. Effects of caffeinated gum on a battery of soccer-specific tests in trained university-standard male soccer players. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 629–634. [Google Scholar] [CrossRef]
- Yildirim, U.C.; Akcay, N.; Alexe, D.I.; Esen, O.; Gulu, M.; Cîrtiţă-Buzoianu, C.; Cinarli, F.S.; Cojocaru, M.; Sari, C.; Alexe, C.I.; et al. Acute effect of different doses of caffeinated chewing gum on exercise performance in caffeine-habituated male soccer players. Front. Nutr. 2023, 10, 1251740. [Google Scholar] [CrossRef]
- Lara, B.; Gonzalez-Millán, C.; Salinero, J.J.; Abian-Vicen, J.; Areces, F.; Barbero-Alvarez, J.C.; Muñoz, V.; Portillo, L.J.; Gonzalez-Rave, J.M.; Del Coso, J. Caffeine-containing energy drink improves physical performance in female soccer players. Amino Acids 2014, 46, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Rodak, K.; Kokot, I.; Kratz, E.M. Caffeine as a factor influencing the functioning of the human Body—Friend or Foe? Nutrients 2021, 13, 3088. [Google Scholar] [CrossRef] [PubMed]
- Nédélec, M.; Halson, S.; Abaidia, A.-E.; Ahmaidi, S.; Dupont, G. Stress, Sleep and Recovery in Elite Soccer: A Critical Review of the Literature. Sports Med. 2015, 45, 1387–1400. [Google Scholar] [CrossRef]
- Doherty, R.; Madigan, S.M.; Nevill, A.; Warrington, G.; Ellis, J.G. The sleep and recovery practices of athletes. Nutrients 2021, 13, 1330. [Google Scholar] [CrossRef]
- Nollet, M.; Wisden, W.; Franks, N.P. Sleep deprivation and stress: A reciprocal relationship. Interface Focus 2020, 10, 20190092. [Google Scholar] [CrossRef]
- Benton, D.; Bloxham, A.; Gaylor, C.; Brennan, A.; Young, H.A. Carbohydrate and sleep: An evaluation of putative mechanisms. Front. Nutr. 2022, 9, 933898. [Google Scholar] [CrossRef]
- Markwald, R.R.; Melanson, E.L.; Smith, M.R.; Higgins, J.; Perreault, L.; Eckel, R.H.; Wright, K.P. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc. Natl. Acad. Sci. USA 2013, 110, 5695–5700. [Google Scholar] [CrossRef] [PubMed]
- Weibel, J.; Lin, Y.-S.; Landolt, H.-P.; Kistler, J.; Rehm, S.; Rentsch, K.M.; Slawik, H.; Borgwardt, S.; Cajochen, C.; Reichert, C.F. The impact of daily caffeine intake on nighttime sleep in young adult men. Sci. Rep. 2021, 11, 4668. [Google Scholar] [CrossRef]
- Minaei, S.; Rahimi, M.R.; Mohammadi, H.; Jourkesh, M.; Kreider, R.B.; Forbes, S.C.; Souza-Junior, T.P.; McAnulty, S.R.; Kalman, D. CYP1A2 Genotype Polymorphism Influences the Effect of Caffeine on Anaerobic Performance in Trained Males. Int. J. Sport Nutr. Exerc. Metab. 2022, 32, 16–21. [Google Scholar] [CrossRef]
- Womack, C.J.; Saunders, M.J.; Bechtel, M.K.; Bolton, D.J.; Martin, M.; Luden, N.D.; Dunham, W.; Hancock, M. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. J. Int. Soc. Sports Nutr. 2012, 9, 7, Erratum in J. Int. Soc. Sports Nutr. 2015, 12, 24. [Google Scholar] [CrossRef]
- Pataky, M.W.; Womack, C.J.; Saunders, M.J.; Goffe, J.L.; D’LUgos, A.C.; El-Sohemy, A.; Luden, N.D. Caffeine and 3-km cycling performance: Effects of mouth rinsing, genotype, and time of day. Scand. J. Med. Sci. Sports 2016, 26, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M.C.; El-Sohemy, A.; Kabagambe, E.K.; Campos, H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA 2006, 295, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Grgic, J. Caffeine and Exercise: What Next? Sports Med. 2019, 49, 1007–1030. [Google Scholar] [CrossRef]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. Are the Current Guidelines on Caffeine Use in Sport Optimal for Everyone? Inter-individual Variation in Caffeine Ergogenicity, and a Move Towards Personalised Sports Nutrition. Sports Med. 2018, 48, 7–16. [Google Scholar] [CrossRef]
- Kamimori, G.H.; Karyekar, C.S.; Otterstetter, R.; Cox, D.S.; Balkin, T.J.; Belenky, G.L.; Eddington, N.D. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int. J. Pharm. 2022, 234, 159–167. [Google Scholar] [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef]
- Hobson, R.M.; Saunders, B.; Ball, G.; Harris, R.C.; Sale, C. Effects of β-alanine supplementation on exercise performance: A meta-analysis. Amino Acids 2012, 43, 25–37. [Google Scholar] [CrossRef]
- Harris, R.C.; Sale, C. Beta-alanine supplementation in high-intensity exercise. Med. Sport Sci. 2012, 59, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Jukić, I.; Kolobarić, N.; Stupin, A.; Matić, A.; Kozina, N.; Mihaljević, Z.; Mihalj, M.; Šušnjara, P.; Stupin, M.; Ćurić, Ž.B.; et al. Carnosine, small but mighty—Prospect of use as functional ingredient for functional food formulation. Antioxidants 2021, 10, 1037. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.C.; Tallon, M.J.; Dunnett, M.; Boobis, L.; Coakley, J.; Kim, H.J.; Fallowfield, J.L.; Hill, C.A.; Sale, C.; Wise, J.A. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 2006, 30, 279–289. [Google Scholar] [CrossRef]
- Dolan, E.; A Swinton, P.; Painelli, V.d.S.; Hemingway, B.S.; Mazzolani, B.; Smaira, F.I.; Saunders, B.; Artioli, G.G.; Gualano, B. A Systematic Risk Assessment and Meta-Analysis on the Use of Oral β-Alanine Supplementation. Adv. Nutr. Int. Rev. J. 2019, 10, 452–463. [Google Scholar] [CrossRef]
- Saunders, B.; Franchi, M.; de Oliveira, L.F.; Silva, V.d.E.; da Silva, R.P.; Painelli, V.d.S.; Costa, L.A.R.; Sale, C.; Harris, R.C.; Roschel, H.; et al. 24-Week β-alanine ingestion does not affect muscle taurine or clinical blood parameters in healthy males. Eur. J. Nutr. 2020, 59, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Saunders, B.; Elliott-Sale, K.; Artioli, G.G.; A Swinton, P.; Dolan, E.; Roschel, H.; Sale, C.; Gualano, B. β-Alanine supplementation to improve exercise capacity and performance: A systematic review and meta-Analysis. Br. J. Sports Med. 2017, 51, 658–669. [Google Scholar] [CrossRef]
- Saunders, B.; Sunderland, C.; Harris, R.C.; Sale, C. β-alanine supplementation improves YoYo intermittent recovery test performance. J. Int. Soc. Sports Nutr. 2012, 9, 39. [Google Scholar] [CrossRef]
- Rosas, F.; Ramírez-Campillo, R.; Martínez, C.; Caniuqueo, A.; Cañas-Jamet, R.; McCrudden, E.; Meylan, C.; Moran, J.; Nakamura, F.Y.; Pereira, L.A.; et al. Effects of Plyometric Training and Beta-Alanine Supplementation on Maximal-Intensity Exercise and Endurance in Female Soccer Players. J. Hum. Kinet. 2017, 58, 99–109. [Google Scholar] [CrossRef]
- Chung, W.; Shaw, G.; Anderson, M.E.; Pyne, D.B.; Saunders, P.U.; Bishop, D.J.; Burke, L.M. Effect of 10- week beta-alanine supplementation on competition and training performance in elite swimmers. Nutrients 2012, 4, 1441–1453. [Google Scholar] [CrossRef]
- Liu, Q.; Sikand, P.; Ma, C.; Tang, Z.; Han, L.; Li, Z.; Sun, S.; LaMotte, R.H.; Dong, X. Mechanisms of itch evoked by β-alanine. J. Neurosci. 2012, 32, 14532–14537. [Google Scholar] [CrossRef]
- Trexler, E.T.; Smith-Ryan, A.E.; Stout, J.R.; Hoffman, J.R.; Wilborn, C.D.; Sale, C.; Kreider, R.B.; Jäger, R.; Earnest, C.P.; Bannock, L.; et al. International society of sports nutrition position stand: Beta-Alanine. J. Int. Soc. Sports Nutr. 2015, 12, 30. [Google Scholar] [CrossRef]
- Culbertson, J.Y.; Kreider, R.B.; Greenwood, M.; Cooke, M. Effects of beta-alanine on muscle carnosine and exercise performance: A review of the current literature. Nutrients 2010, 2, 75–98. [Google Scholar] [CrossRef]
- Antonio, J.; Candow, D.G.; Forbes, S.C.; Gualano, B.; Jagim, A.R.; Kreider, R.B.; Rawson, E.S.; Smith-Ryan, A.E.; VanDusseldorp, T.A.; Willoughby, D.S.; et al. Common questions and misconceptions about creatine supplementation: What does the scientific evidence really show? J. Int. Soc. Sports Nutr. 2021, 18, 13. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.; Naclerio, F.; Allgrove, J.; Jimenez, A. Creatine supplementation with specific view to exercise/sports performance: An update. J. Int. Soc. Sports Nutr. 2012, 9, 33. [Google Scholar] [CrossRef]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 18. [Google Scholar] [CrossRef]
- Burke, L.M. Nutritional approaches to counter performance constraints in high-level sports competition. Exp. Physiol. 2021, 106, 2304–2323. [Google Scholar] [CrossRef]
- Brosnan, J.T.; Brosnan, M.E. Creatine: Endogenous metabolite, dietary, and therapeutic supplement. Annu. Rev. Nutr. 2007, 27, 241–261. [Google Scholar] [CrossRef] [PubMed]
- Kim, J. Effects of combined creatine and sodium bicarbonate supplementation on soccer-specific performance in elite soccer players: A randomized controlled trial. Int. J. Environ. Res. Public Health 2021, 18, 6919. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; Padilla, S.; Ibañez, J.; Izquierdo, M.; Gorostiaga, E. Creatine supplementation and sprint performance in soccer players. Med. Sci. Sports Exerc. 2000, 32, 518–525. [Google Scholar] [CrossRef]
- Ramírez-Campillo, R.; González-Jurado, J.A.; Martínez, C.; Nakamura, F.Y.; Peñailillo, L.; Meylan, C.M.; Caniuqueo, A.; Cañas-Jamet, R.; Moran, J.; Alonso-Martínez, A.M.; et al. Effects of plyometric training and creatine supplementation on maximal-intensity exercise and endurance in female soccer players. J. Sci. Med. Sport 2016, 19, 682–687. [Google Scholar] [CrossRef]
- Zajac, A.; Golas, A.; Chycki, J.; Halz, M.; Michalczyk, M.M. The effects of long-term magnesium creatine chelate supplementation on repeated sprint ability (RAST) in elite soccer players. Nutrients 2020, 12, 2961. [Google Scholar] [CrossRef]
- Close, G.L.; Kasper, A.M.; Walsh, N.P.; Maughan, R.J. “Food First but Not Always Food Only”: Recommendations for Using Dietary Supplements in Sport. Int. J. Sport Nutr. Exerc. Metab. 2022, 32, 371–386. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.; Trojan, T.H. Creatine supplementation. Curr. Sports Med. Rep. 2013, 12, 240–244. [Google Scholar] [CrossRef]
- Miny, K.; Burrowes, J.; Jidovtseff, B. Interest of creatine supplementation in soccer. Sci. Sports 2017, 32, 61–72. [Google Scholar] [CrossRef]
- Silva, J.R.; Nassis, G.P.; Rebelo, A. Strength training in soccer with a specific focus on highly trained players. Sports Med.Open 2015, 1, 17. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Jäger, R.; Purpura, M. Bioavailability, Efficacy, Safety, and Regulatory Status of Creatine and Related Compounds: A Critical Review. Nutrients 2022, 14, 1035. [Google Scholar] [CrossRef]
- Candow, D.G.; Forbes, S.C.; Roberts, M.D.; Roy, B.D.; Antonio, J.; Smith-Ryan, A.E.; Rawson, E.S.; Gualano, B.; Roschel, H. Creatine o’clock: Does timing of ingestion really influence muscle mass and performance? Front. Sports Act. Living 2022, 4, 893714. [Google Scholar] [CrossRef]
- Ribeiro, F.; Longobardi, I.; Perim, P.; Duarte, B.; Ferreira, P.; Gualano, B.; Roschel, H.; Saunders, B. Timing of creatine supplementation around exercise: A real concern? Nutrients 2021, 13, 2844. [Google Scholar] [CrossRef]
- Islam, H.; Yorgason, N.J.; Hazell, T.J. Creatine co-ingestion with carbohydrate or cinnamon extract provides no added benefit to anaerobic performance. Eur. J. Sport Sci. 2016, 16, 685–693. [Google Scholar] [CrossRef]
- Grgic, J.; Grgic, I.; Del Coso, J.; Schoenfeld, B.J.; Pedisic, Z. Effects of sodium bicarbonate supplementation on exercise performance: An umbrella review. J. Int. Soc. Sports Nutr. 2021, 18, 71. [Google Scholar] [CrossRef]
- Carr, A.J.; Slater, G.J.; Gore, C.J.; Dawson, B.; Burke, L.M. Effect of sodium bicarbonate on [HCO3-], pH, and gastrointestinal symptoms. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 189–194. [Google Scholar] [CrossRef]
- Price, M.J.; Singh, M. Time course of blood bicarbonate and pH three hours after sodium bicarbonate ingestion. Int. J. Sports Physiol. Perform. 2008, 3, 240–242. [Google Scholar] [CrossRef]
- Siegler, J.C.; Midgley, A.W.; Polman, R.C.J.; Lever, R. Effects of various sodium bicarbonate loading protocols on the time-dependent extracellular buffering profile. J. Strength Cond. Res. 2010, 24, 2551–2557. [Google Scholar] [CrossRef] [PubMed]
- Peart, D.J.; Siegler, J.C.; Vince, R.V. Practical recommendations for coaches and athletes: Ameta-analysis of sodium bicarbonate use for athletic performance. J. Strength Cond. Res. 2012, 26, 1975–1983. [Google Scholar] [CrossRef] [PubMed]
- Hadzic, M.; Eckstein, M.L.; Schugardt, M. The impact of sodium bicarbonate on performance in response to exercise duration in athletes: A systematic review. J. Sports Sci. Med. 2019, 18, 271–281. [Google Scholar]
- Chycki, J.; Golas, A.; Halz, M.; Maszczyk, A.; Toborek, M.; Zajac, A. Chronic ingestion of sodium and potassium bicarbonate, with potassium, magnesium and calcium citrate improves anaerobic performance in elite soccer players. Nutrients 2018, 10, 1610. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M. Practical issues in evidence-based use of performance supplements: Supplement interactions, repeated use and individual responses. Sports Med. 2017, 47 (Suppl. 1), 79–100. [Google Scholar] [CrossRef]
- Kahle, L.E.; Kelly, P.V.; Eliot, K.A.; Weiss, E.P. Acute sodium bicarbonate loading has negligible effects on resting and exercise blood pressure but causes gastrointestinal distress. Nutr. Res. 2013, 33, 479–486. [Google Scholar] [CrossRef]
- Hilton, N.P.; Leach, N.K.; Sparks, S.A.; Gough, L.A.; Craig, M.M.; Deb, S.K.; McNaughton, L.R. A Novel Ingestion Strategy for Sodium Bicarbonate Supplementation in a Delayed-Release Form: A Randomised Crossover Study in Trained Males. Sports Med. Open 2019, 5, 4. [Google Scholar] [CrossRef]
- Gough, L.A.; Sparks, S.A. The effects of a carbohydrate hydrogel system for the delivery of bicarbonate mini-tablets on acid-base buffering and gastrointestinal symptoms in resting well-trained male cyclists. Sports Med. Open 2024, 10, 17. [Google Scholar] [CrossRef]
- Affourtit, C.; Bailey, S.J.; Jones, A.M.; Smallwood, M.J.; Winyard, P.G. On the mechanism by which dietary nitrate improves human skeletal muscle function. Front. Physiol. 2015, 6, 211. [Google Scholar] [CrossRef]
- Jones, A.M.; Vanhatalo, A.; Seals, D.R.; Rossman, M.J.; Piknova, B.; Jonvik, K.L. Dietary Nitrate and Nitric Oxide Metabolism: Mouth, Circulation, Skeletal Muscle, and Exercise Performance. Med. Sci. Sports Exerc. 2021, 53, 280–294. [Google Scholar] [CrossRef]
- Clements, W.T.; Lee, S.-R.; Bloomer, R.J. Nitrate ingestion: A review of the health and physical performance effects. Nutrients 2014, 6, 5224–5264. [Google Scholar] [CrossRef] [PubMed]
- Bescós, R.; Sureda, A.; Tur, J.A.; Pons, A. The effect of nitric-oxide-related supplements on human performance. Sports Med. 2012, 42, 99–117. [Google Scholar] [CrossRef] [PubMed]
- Daab, W.; Bouzid, M.A.; Lajri, M.; Bouchiba, M.; Saafi, M.A.; Rebai, H. Chronic Beetroot Juice Supplementation Accelerates Recovery Kinetics following Simulated Match Play in Soccer Players. J. Am. Coll. Nutr. 2021, 40, 61–69. [Google Scholar] [CrossRef]
- Bongiovanni, T.; Rossi, A.; Trecroci, A.; Martera, G.; Iaia, M.I.; Alberti, G.; Pasta, G.; Lacome, M. Regional bioelectrical phase angle is more informative than whole-body phase angle for monitoring neuromuscular performance: A pilot study in elite young soccer players. Sports 2022, 10, 66. [Google Scholar] [CrossRef]
- Nyakayiru, J.; Jonvik, K.L.; Trommelen, J.; Pinckaers, P.J.M.; Senden, J.M.; Van Loon, L.J.C.; Verdijk, L.B. Beetroot juice supplementation improves high-intensity intermittent type exercise performance in trained soccer players. Nutrients 2017, 9, 314. [Google Scholar] [CrossRef] [PubMed]
- Babateen, A.M.; Fornelli, G.; Donini, L.M.; Mathers, J.C.; Siervo, M. Assessment of dietary nitrate intake in humans: A systematic review. Am. J. Clin. Nutr. 2018, 108, 878–888. [Google Scholar] [CrossRef]
- Luke, R.G.; Watson, W.C. Anaphylaxis with beeturia. BMJ 1963, 2, 980. [Google Scholar] [CrossRef]
- van Rosendal, S.P.; Coombes, J.S. Glycerol use in hyperhydration and rehydration: Scientific update. Acute Top. Sport Nutr. 2012, 59, 104–112. [Google Scholar] [CrossRef]
- Williams, C.A.; Blackwell, J. Hydration status, fluid intake, and electrolyte losses in youth soccer players. Int. J. Sports Physiol. Perform. 2012, 7, 367–374. [Google Scholar] [CrossRef]
- Savoie, F.A.; Dion, T.; Asselin, A.; Goulet, E.D. Sodium-induced hyperhydration decreases urine output and improves fluid balance compared with glycerol- and water-induced hyperhydration. Appl. Physiol. Nutr. Metab. 2015, 40, 51–58. [Google Scholar] [CrossRef]
- E Greenleaf, J. Problem: Thirst, drinking behavior, and involuntary dehydration. Med. Sci. Sports Exerc. 1992, 24, 645–656. [Google Scholar] [CrossRef]
- Robergs, R.A.; Griffin, S.E. Glycerol: Biochemistry, pharmacokinetics and clinical and practical applications. Sports Med. 1998, 26, 145–167. [Google Scholar] [CrossRef]
- McCubbin, A.J.; Allanson, B.A.; Odgers, J.N.C.; Cort, M.M.; Costa, R.J.; Cox, G.R.; Crawshay, S.T.; Desbrow, B.; Freney, E.G.; Gaskell, S.K.; et al. Sports Dietitians Australia position statement: Nutrition for exercise in hot environments. Int. J. Sport Nutr. Exerc. Metab. 2020, 30, 83–98. [Google Scholar] [CrossRef]
- van Rosendal, S.P.; A Osborne, M.; Fassett, R.G.; Coombes, J.S. Physiological and performance effects of glycerol hyperhydration and rehydration. Nutr. Rev. 2009, 67, 690–705. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Noguera, F.J.; Cabizosu, A.; Alcaraz, P.E.; Marín-Pagán, C. Effects of pre-exercise glycerol supplementation on dehydration, metabolic, kinematic and thermographic variables in international race walkers. J. Int. Soc. Sports Nutr. 2024, 21, 2346563. [Google Scholar] [CrossRef] [PubMed]
- Bongiovanni, T.; Genovesi, F.; Nemmer, M.; Carling, C.; Alberti, G.; Howatson, G. Nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage and accelerate recovery in athletes: Current knowledge, practical application and future perspectives. Eur. J. Appl. Physiol. 2020, 120, 1965–1996. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M.; van Loon, L.J. Dietary protein for athletes: From requirements to optimum adaptation. J. Sports Sci. 2011, 29 (Suppl. 1), S29–S38. [Google Scholar] [CrossRef]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef]
- Poulios, A.; Fatouros, I.G.; Mohr, M.; Draganidis, D.; Deli, C.K.; Papanikolaou, K.; Sovatzidis, A.; Nakopoulou, T.; Ermidis, G.; Tzatzakis, T.; et al. Post-game high protein intake may improve recovery of football-specific performance during a congested game fixture: Results from the PRO-FOOTBALL study. Nutrients 2018, 10, 494. [Google Scholar] [CrossRef]
- Vitale, K.C.; Hueglin, S.; Broad, E. Tart cherry juice in athletes: A literature review and commentary. Curr. Sports Med. Rep. 2017, 16, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Bell, P.G.; Stevenson, E.; Davison, G.W.; Howatson, G. The effects of Montmorency tart cherry concentrate supplementation on recovery following prolonged, intermittent exercise. Nutrients 2016, 8, 441. [Google Scholar] [CrossRef]
- Abbott, W.; Brashill, C.; Brett, A.; Clifford, T. Tart cherry juice: No effect on muscle functions loss or muscle soreness in professional soccer players after a match. Int. J. Sports Physiol. Perform. 2020, 15, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rodríguez, A.; Miralles-Amorós, L.; Vicente-Martínez, M.; Asencio-Mas, N.; Yáñez-Sepúlveda, R.; Martínez-Olcina, M. Ramadan Nutritional Strategy: Professional Soccer Player Case Study. Nutrients 2022, 14, 465. [Google Scholar] [CrossRef] [PubMed]
- Hulton, A.T.; Malone, J.J.; Clarke, N.D.; MacLaren, D.P.M. Energy Requirements and Nutritional Strategies for Male Soccer Players: A Review and Suggestions for Practice. Nutrients 2022, 14, 657. [Google Scholar] [CrossRef]
- Iglesias-Gutiérrez, E.; García, A.; García-Zapico, P.; Pérez-Landaluce, J.; Patterson, A.M.; García-Rovés, P.M. Is there a relationship between the playing position of soccer players and their food and macronutrient intake? Appl. Physiol. Nutr. Metab. 2012, 37, 225–232. [Google Scholar] [CrossRef]
- de Oliveira, E.P.; Burini, R.C. Food-dependent, exercise-induced gastrointestinal distress. J. Int. Soc. Sports Nutr. 2011, 8, 12. [Google Scholar] [CrossRef]
- Ranchordas, M.K.; Dawson, J.T.; Russell, M. Practical nutritional recovery strategies for elite soccer players when limited time separates repeated matches. J. Int. Soc. Sports Nutr. 2017, 14, 35. [Google Scholar] [CrossRef]
- Campa, F.; Bongiovanni, T.; Trecroci, A.; Rossi, A.; Greco, G.; Pasta, G.; Coratella, G. Effects of the COVID-19 Lockdown on body composition and bioelectrical phase angle in Serie A soccer players: A comparison of two consecutive seasons. Biology 2021, 10, 1175. [Google Scholar] [CrossRef]
- Campa, F.; Bongiovanni, T.; Matias, C.N.; Genovesi, F.; Trecroci, A.; Rossi, A.; Iaia, F.M.; Alberti, G.; Pasta, G.; Toselli, S. A new strategy to integrate Heath-Carter Somatotype assessment with bioelectrical impedance analysis in elite soccer player. Sports 2020, 8, 142. [Google Scholar] [CrossRef] [PubMed]
- Desbrow, B.; Hughes, R.; Leveritt, M.; Scheelings, P. An examination of consumer exposure to caffeine from retail coffee outlets. Food Chem. Toxicol. 2007, 45, 1588–1592. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. What Should We Do About Habitual Caffeine Use in Athletes? Sports Med. 2019, 49, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Olechno, E.; Puścion-Jakubik, A.; Zujko, M.E.; Socha, K. Influence of various factors on caffeine content in coffee brews. Foods 2021, 10, 1208. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.R.; Stout, J.R.; Harris, R.C.; Moran, D.S. β-Alanine supplementation and military performance. Amino Acids 2015, 47, 2463–2474. [Google Scholar] [CrossRef]
- Lidder, S.; Webb, A.J. Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate-nitrite-nitric oxide pathway. Br. J. Clin. Pharmacol. 2013, 75, 677–696. [Google Scholar] [CrossRef]
- Balsom, P.D.; Söderlund, K.; Ekblom, B. Creatine in Humans with Special Reference to Creatine Supplementation. Sports Med. 1994, 18, 268–280. [Google Scholar] [CrossRef]
- Walpurgis, K.; Thomas, A.; Geyer, H.; Mareck, U.; Thevis, M. Dietary supplement and food contaminations and their implications for doping controls. Foods 2020, 9, 1012. [Google Scholar] [CrossRef]
- Maughan, R.J. Quality assurance issues in the use of dietary supplements with special reference to protein supplements. J. Nutr. 2013, 143, 1843S–1847S. [Google Scholar] [CrossRef]
- Solly, H.; Badenhorst, C.E.; McCauley, M.; Slater, G.J.; Gifford, J.A.; Erueti, B.; Beck, K.L. Athlete Preferences for Nutrition Education: Development of and Findings from a Quantitative Survey. Nutrients 2023, 15, 2519. [Google Scholar] [CrossRef] [PubMed]




| Supplement | Authors | Evidence from the Literature | Relation to Soccer Performance | Practitioner Use (Survey) | Main Barriers in Practice |
|---|---|---|---|---|---|
| Caffeine | Foskett and Gant (2009) [28] | Ingestion of caffeine (6 mg/kg) 60 min before a match improved passing accuracy and jump height. | Enhanced passing accuracy helps midfielders deliver precise passes and crosses, increasing goal-scoring opportunities. Improved jump height enhances central defenders’ aerial ability in duels such as headers. | Widely used (>90%), typically on match days, 30–60 min before kick-off. Doses usually range from 100 to 250 mg, administered as pills, gums, or gels. | Individual variability (fast vs. slow metabolizers), sleep disruption (especially for late matches), and gastrointestinal discomfort from drinks or gels. |
| Caffeine | Guerra Jr. et al. (2018) [29] | Plyometric and sled-towing stimuli combined with caffeine (5 mg/kg) enhanced jump performance. | Improved jump performance increases aerial effectiveness for defenders and forwards, particularly in headers and duels. | ||
| Caffeine | Nakamura et al. (2020) [30] | Caffeine ingestion (3 mg/kg) improved intermittent sprint ability. | Enhanced sprint ability supports full-backs and wing-backs during high-intensity runs, such as overlapping or making runs behind defenders. | ||
| Caffeine | Ranchordas et al. (2018) [31] | Chewing caffeinated gum (200 mg) for 5 min before performance tests improved countermovement jump, sprint, and Yo-Yo Intermittent Recovery Test Level 1 results. | Improved explosive strength (e.g., countermovement jump) and sprint performance, crucial for key soccer actions both in and out of possession. | ||
| Caffeine | Yildirim et al. (2023) [32] | Chewing caffeinated gum (200 mg) for 10 min improved quadriceps strength, ball-kicking speed, and countermovement jump performance. | Enhanced kicking speed, quadriceps strength, and jump performance, all essential for powerful shots, precise passes, and aerial duels. | ||
| Beta-alanine | Saunders et al. (2012) [57] | Twelve weeks of beta-alanine supplementation (3.2 g/day) improved Yo-Yo Intermittent Recovery Test Level 2 performance. | Enhanced muscle buffering capacity and reduced intracellular pH support high-intensity efforts and improve recovery during games. | Moderately used (~30%), typically short-term (4–8 weeks), taken with meals, often in pill form. | Tingling side effects, variable efficacy, and long supplementation period required. |
| Beta-alanine | Rosas et al. (2017) [58] | Beta-alanine supplementation (4.8 g/day) combined with six weeks of plyometric training enhanced endurance, repeated sprinting, and jumping ability. | Enhanced repeated sprinting ability can increase the number of attacking sprints, leading to more goal-scoring opportunities. | ||
| Creatine | Muijika et al. (2000) [69] | Creatine supplementation (20 g/day for 6 days) improved repeated sprint performance and maintained countermovement jump height. | Enhanced strength, power, and sprint capacity support critical match actions such as winning aerial duels, tackling, and rapid acceleration. | Widely used (>90%). Primarily creatine monohydrate, usually following a low-dose protocol (3–5 g/day). Typically administered after training or matches. | Weight gain due to water retention, gastrointestinal discomfort in some players, and need for coach education. |
| Creatine | Zajac et al. (2020) [71] | Magnesium creatine chelate (5 g/day for 16 weeks) improved repeated anaerobic sprint performance. | Helps players outpace opponents during counterattacks, sprint to intercept passes, or accelerate into space to finish plays. | ||
| Creatine | Kim (2021) [68] | Creatine (20 g/day) combined with sodium bicarbonate (0.3 g/kg/day) for seven days improved sprint times (10 and 30 m) and agility performance. | Improves players’ ability to outrun defenders during fast attacks or quickly recover possession. | ||
| Sodium bicarbonate | Chycki et al. (2018) [87] | Co-ingestion of sodium bicarbonate (300 mg/kg/day) and potassium bicarbonate (300 mg/kg/day) for nine days improved repeated sprint performance (6 × 30 m). | Enhanced repeated sprint ability aids in breaking through defensive lines through dribbling, through balls, overlapping runs, and other dynamic actions. | Limited use (~24%). Occasionally used with creatine. | Gastrointestinal discomfort (bloating and diarrhea), impractical timing, and poor adherence. |
| Nitrate | Daab et al. (2021) [96] | Nitrate ingestion (~500 mg/day for seven days) attenuated performance declines in countermovement jump and 20 m sprint after intermittent exercise. | Maintaining repeated jump and sprint capacity is critical for aerial duels, quick recoveries, and regaining balance during play. | Moderately used (~48%). Mostly consumed on match days as beetroot juice or concentrated shots. | Gastrointestinal discomfort, beeturia, compliance issues. |
| Nitrate | Nyakayiru et al. (2017) [98] | Nitrate ingestion (~800 mg/day for six days) improved intermittent performance and reduced mean heart rate. | Enhances high-speed running capacity during counterattacks, defensive recoveries, and pressing situations. | ||
| Tart cherry | Abbott et al. (2019) [115] | Tart cherry juice concentrate consumed before and after a 90-min match (12 h and 36 h post-match) reduced declines in countermovement jump reactive strength index (RSI). | Maintaining RSI supports explosive actions such as sprints, changes of direction, and vertical jumps, all decisive for match outcomes. | Limited use (~32%), mainly post-match during congested schedules. | Mixed evidence, novelty, and taste preferences. |
| Protein | Poulios et al. (2018) [112] | Milk protein supplementation improved maximum speed, sprint times (10 and 30 m), and jump height between matches. | Improved neuromuscular performance enhances fatigue resistance and reduces performance deterioration, preparing players for subsequent matches. | Widely used (~87%). Primarily whey or milk proteins, administered post-training or post-match. | Few barriers; widely accepted as safe and convenient. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bongiovanni, T.; Genovesi, F.; Carling, C.; Greco, G.; Jäger, R. From Science to Dressing Room: Dietary Supplements for Elite Soccer Performance. J. Funct. Morphol. Kinesiol. 2025, 10, 408. https://doi.org/10.3390/jfmk10040408
Bongiovanni T, Genovesi F, Carling C, Greco G, Jäger R. From Science to Dressing Room: Dietary Supplements for Elite Soccer Performance. Journal of Functional Morphology and Kinesiology. 2025; 10(4):408. https://doi.org/10.3390/jfmk10040408
Chicago/Turabian StyleBongiovanni, Tindaro, Federico Genovesi, Christopher Carling, Gianpiero Greco, and Ralf Jäger. 2025. "From Science to Dressing Room: Dietary Supplements for Elite Soccer Performance" Journal of Functional Morphology and Kinesiology 10, no. 4: 408. https://doi.org/10.3390/jfmk10040408
APA StyleBongiovanni, T., Genovesi, F., Carling, C., Greco, G., & Jäger, R. (2025). From Science to Dressing Room: Dietary Supplements for Elite Soccer Performance. Journal of Functional Morphology and Kinesiology, 10(4), 408. https://doi.org/10.3390/jfmk10040408

