Adaptation of Transcortical Responses in Upper Extremity Movements During an Elbow Visuomotor Tracking Task in Humans
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Instrumentation
2.3. Experimental Setup
2.4. Performance Variables
2.5. Electromyography (EMG)
2.6. Perturbation and Data Collection
2.7. Statistical Analysis
3. Results
3.1. Task Performance
3.2. Synergistic Strategy in Response to the Unexpected Perturbation
3.3. Learning Effect and Strategy Refinement
4. Discussion
4.1. Feedforward and Feedback Movement Control Strategies
4.2. Theoretical Mechanisms Modulating LLRs
4.3. Learning and Reflex Responses
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SLR | Short-latency response |
LLR | Long-latency response |
VR | Volitional response |
EMG | Electromyography |
References
- Bernshteĭn, N.A. The Co-Ordination and Regulation of Movements, 1st English ed.; Pergamon Press: Oxford, UK, 1967; p. xii. 196p. [Google Scholar]
- Riemann, B.L.; Lephart, S.M. The sensorimotor system, part I: The physiologic basis of functional joint stability. J. Athl. Train. 2002, 37, 71–79. [Google Scholar]
- Kurtzer, I.L. Long-latency reflexes account for limb biomechanics through several supraspinal pathways. Front. Integr. Neurosci. 2014, 8, 99. [Google Scholar] [CrossRef]
- Marsden, C.D.; Rothwell, J.C.; Day, B.L. Long-latency automatic responses to muscle stretch in man: Origin and function. Adv. Neurol. 1983, 39, 509–539. [Google Scholar] [PubMed]
- Scott, S.H. Optimal feedback control and the neural basis of volitional motor control. Nat. Rev. Neurosci. 2004, 5, 532–546. [Google Scholar] [CrossRef] [PubMed]
- Burke, D.; Gandevia, S.C.; McKeon, B. Monosynaptic and oligosynaptic contributions to human ankle jerk and H-reflex. J. Neurophysiol. 1984, 52, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, G.; Iglesias, C.; Cavallari, P.; Pierrot-Deseilligny, E.; Marchand-Pauvert, V. Mediation of late excitation from human hand muscles via parallel group II spinal and group I transcortical pathways. J. Physiol. 2006, 572, 585–603. [Google Scholar] [CrossRef]
- Koshland, G.F.; Hasan, Z. Electromyographic responses to a mechanical perturbation applied during impending arm movements in different directions: One-joint and two-joint conditions. Exp. Brain Res. 2000, 132, 485–499. [Google Scholar] [CrossRef]
- Lowrey, C.R.; Nashed, J.Y.; Scott, S.H. Rapid and flexible whole body postural responses are evoked from perturbations to the upper limb during goal-directed reaching. J. Neurophysiol. 2017, 117, 1070–1083. [Google Scholar] [CrossRef]
- Yang, Y.; Guliyev, B.; Schouten, A.C. Dynamic Causal Modeling of the Cortical Responses to Wrist Perturbations. Front. Neurosci. 2017, 11, 518. [Google Scholar] [CrossRef]
- Horak, F.B.; Frank, J.; Nutt, J. Effects of dopamine on postural control in parkinsonian subjects: Scaling, set, and tone. J. Neurophysiol. 1996, 75, 2380–2396. [Google Scholar] [CrossRef]
- Hammond, P.H. The influence of prior instruction to the subject on an apparently involuntary neuro-muscular response. J. Physiol. 1956, 132, 17–18. [Google Scholar]
- Shemmell, J.; Krutky, M.A.; Perreault, E.J. Stretch sensitive reflexes as an adaptive mechanism for maintaining limb stability. Clin. Neurophysiol. 2010, 121, 1680–1689. [Google Scholar] [CrossRef] [PubMed]
- Pruszynski, J.A.; Kurtzer, I.; Scott, S.H. Rapid motor responses are appropriately tuned to the metrics of a visuospatial task. J. Neurophysiol. 2008, 100, 224–238. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, J.C.; Traub, M.M.; Marsden, C.D. Influence of voluntary intent on the human long-latency stretch reflex. Nature 1980, 286, 496–498. [Google Scholar] [CrossRef]
- Soechting, J.F.; Lacquaniti, F. Quantitative evaluation of the electromyographic responses to multidirectional load perturbations of the human arm. J. Neurophysiol. 1988, 59, 1296–1313. [Google Scholar] [CrossRef]
- Koshland, G.F.; Hasan, Z.; Gerilovsky, L. Activity of wrist muscles elicited during imposed or voluntary movements about the elbow joint. J. Mot. Behav. 1991, 23, 91–100. [Google Scholar] [CrossRef]
- Kimura, T.; Haggard, P.; Gomi, H. Transcranial magnetic stimulation over sensorimotor cortex disrupts anticipatory reflex gain modulation for skilled action. J. Neurosci. 2006, 26, 9272–9281. [Google Scholar] [CrossRef]
- Crevecoeur, F.; Kurtzer, I.; Bourke, T.; Scott, S.H. Feedback responses rapidly scale with the urgency to correct for external perturbations. J. Neurophysiol. 2013, 110, 1323–1332. [Google Scholar] [CrossRef]
- Nashed, J.Y.; Crevecoeur, F.; Scott, S.H. Influence of the behavioral goal and environmental obstacles on rapid feedback responses. J. Neurophysiol. 2012, 108, 999–1009. [Google Scholar] [CrossRef]
- Coltman, S.K.; Gribble, P.L. Time course of changes in the long-latency feedback response parallels the fast process of short-term motor adaptation. J. Neurophysiol. 2020, 124, 388–399. [Google Scholar] [CrossRef]
- Madhavan, S.; Burkart, S.; Baggett, G.; Nelson, K.; Teckenburg, T.; Zwanziger, M.; Shields, R.K. Influence of age on neuromuscular control during a dynamic weight-bearing task. J. Aging Phys. Act. 2009, 17, 327–343. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Granados, A.; Barany, D.A.; Schrayer, M.; Kurtzer, I.L.; Bonnet, C.T.; Singh, T. Age-related deficits in rapid visuomotor decision-making. J. Neurophysiol. 2021, 126, 1592–1603. [Google Scholar] [CrossRef] [PubMed]
- Tatton, W.G.; Lee, R.G. Evidence for abnormal long-loop reflexes in rigid Parkinsonian patients. Brain Res. 1975, 100, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, J.C.; Obeso, J.A.; Traub, M.M.; Marsden, C.D. The behaviour of the long-latency stretch reflex in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1983, 46, 35–44. [Google Scholar] [CrossRef]
- Noth, J.; Friedemann, H.H.; Podoll, K.; Lange, H.W. Absence of long latency reflexes to imposed finger displacements in patients with Huntington’s disease. Neurosci. Lett. 1983, 35, 97–100. [Google Scholar] [CrossRef]
- Noth, J.; Podoll, K.; Friedemann, H.H. Long-loop reflexes in small hand muscles studied in normal subjects and in patients with Huntington’s disease. Brain 1985, 108 Pt 1, 65–80. [Google Scholar] [CrossRef]
- Park, H.D.; Kim, H.T. Electrophysiologic assessments of involuntary movements: Tremor and myoclonus. J. Mov. Disord. 2009, 2, 14–17. [Google Scholar] [CrossRef]
- Demura, A.; Demura, Y.; Ota, M.; Kondo, T.; Kinoshita, M. Clinical significance of the long-loop reflex and giant evoked potentials in genetically proven benign adult familial myoclonic epilepsy. Clin. Neurophysiol. 2020, 131, 978–980. [Google Scholar] [CrossRef]
- Deuschl, G.; Strahl, K.; Schenck, E.; Lücking, C.H. The diagnostic significance of long-latency reflexes in multiple sclerosis. Electroencephalogr. Clin. Neurophysiol. 1988, 70, 56–61. [Google Scholar] [CrossRef]
- Bonfiglio, L.; Rossi, B.; Sartucci, F. Prolonged intracortical delay of long-latency reflexes: Electrophysiological evidence for a cortical dysfunction in multiple sclerosis. Brain Res. Bull. 2006, 69, 606–613. [Google Scholar] [CrossRef]
- Trumbower, R.D.; Finley, J.M.; Shemmell, J.B.; Honeycutt, C.F.; Perreault, E.J. Bilateral impairments in task-dependent modulation of the long-latency stretch reflex following stroke. Clin. Neurophysiol. 2013, 124, 1373–1380. [Google Scholar] [CrossRef]
- Sanes, J.N.; Evarts, E.V. Effects of perturbations on accuracy of arm movements. J. Neurosci. 1983, 3, 977–986. [Google Scholar] [CrossRef]
- Timmann, D.; Richter, S.; Bestmann, S.; Kalveram, K.T.; Konczak, J. Predictive control of muscle responses to arm perturbations in cerebellar patients. J. Neurol. Neurosurg. Psychiatry 2000, 69, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi-Pajouh, M.A.; Towhidkhah, F.; Shadmehr, R. Preparing to reach: Selecting an adaptive long-latency feedback controller. J. Neurosci. 2012, 32, 9537–9545. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Perreault, E.J. Stabilizing Stretch Reflexes Are Modulated Independently From the Rapid Release of Perturbation-Triggered Motor Plans. Sci. Rep. 2019, 9, 13926. [Google Scholar] [CrossRef] [PubMed]
- Torell, F.; Franklin, S.; Franklin, D.W.; Dimitriou, M.D. Assistive Loading Promotes Goal-Directed Tuning of Stretch Reflex Gains. eNeuro 2023, 10, ENEURO.0438-22.2023. [Google Scholar] [CrossRef]
- Tseng, S.C.; Cole, K.R.; Shaffer, M.A.; Petrie, M.A.; Yen, C.L.; Shields, R.K. Speed, resistance, and unexpected accelerations modulate feed forward and feedback control during a novel weight bearing task. Gait Posture 2017, 52, 345–353. [Google Scholar] [CrossRef]
- Petrie, M.; Johnson, K.; McCue, P.; Shields, R.K. Neuromuscular Electrical Stimulation Primes Feedback Control During a Novel Single Leg Task. J. Mot. Behav. 2021, 53, 409–418. [Google Scholar] [CrossRef]
- Johnson, K.A.; Nozu, S.; Shields, R.K. Trunk Angle Modulates Feedforward and Feedback Control during Single-Limb Squatting. J. Funct. Morphol. Kinesiol. 2021, 6, 82. [Google Scholar] [CrossRef]
- Cole, K.R.; Shields, R.K. Age and Cognitive Stress Influences Motor Skill Acquisition, Consolidation, and Dual-Task Effect in Humans. J. Mot. Behav. 2019, 51, 622–639. [Google Scholar] [CrossRef]
- Yu, B.; Garrett, W.E. Mechanisms of non-contact ACL injuries. Br. J. Sports Med. 2007, 41, i47–i51. [Google Scholar] [CrossRef] [PubMed]
- Read, P.J.; Oliver, J.L.; De Ste Croix, M.B.A.; Myer, G.D.; Lloyd, R.S. Neuromuscular Risk Factors for Knee and Ankle Ligament Injuries in Male Youth Soccer Players. Sports Med. 2016, 46, 1059–1066. [Google Scholar] [CrossRef]
- Madhavan, S.; Shields, R.K. Neuromuscular responses in individuals with anterior cruciate ligament repair. Clin. Neurophysiol. 2011, 122, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Hwang, J.M. The center of pressure and ankle muscle co-contraction in response to anterior-posterior perturbations. PLoS ONE 2018, 13, e0207667. [Google Scholar] [CrossRef] [PubMed]
- Morasso, P. A Vexing Question in Motor Control: The Degrees of Freedom Problem. Front. Bioeng. Biotechnol. 2021, 9, 783501. [Google Scholar] [CrossRef]
- Hasan, Z. The human motor control system’s response to mechanical perturbation: Should it, can it, and does it ensure stability? J. Mot. Behav. 2005, 37, 484–493. [Google Scholar] [CrossRef]
- Todorov, E.; Jordan, M.I. Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 2002, 5, 1226–1235. [Google Scholar] [CrossRef]
- Dietz, V.; Discher, M.; Trippel, M. Task-dependent modulation of short- and long-latency electromyographic responses in upper limb muscles. Electroencephalogr. Clin. Neurophysiol. 1994, 93, 49–56. [Google Scholar] [CrossRef]
- Todorov, E.; Jordan, M.I. A Minimal Intervention Principle for Coordinated Movement. In Proceedings of the Neural Information Processing Systems, Vancouver, BC, Canada, 9–14 December 2002. [Google Scholar]
- Gottlieb, G.L.; Agarwal, G.C. Response to sudden torques about ankle in man: Myotatic reflex. J. Neurophysiol. 1979, 42, 91–106. [Google Scholar] [CrossRef]
- Houk, J.C.; Rymer, W.Z.; Crago, P.E. Dependence of dynamic response of spindle receptors on muscle length and velocity. J. Neurophysiol. 1981, 46, 143–166. [Google Scholar] [CrossRef]
- Matthews, P.B. The effect of the activity of the gamma-motoneurones on the relation between tension and extension in the stretch reflex. J. Physiol. 1958, 140, 54–55. [Google Scholar]
- Matthews, P.B. The differentiation of two types of fusimotor fibre by their effects on the dynamic response of muscle spindle primary endings. Q. J. Exp. Physiol. Cogn. Med. Sci. 1962, 47, 324–333. [Google Scholar] [CrossRef]
- Matthews, P.B. Evolving views on the internal operation and functional role of the muscle spindle. J. Physiol. 1981, 320, 1–30. [Google Scholar] [CrossRef]
- Matthews, P.B. Observations on the automatic compensation of reflex gain on varying the pre-existing level of motor discharge in man. J. Physiol. 1986, 374, 73–90. [Google Scholar] [CrossRef] [PubMed]
- Matthews, P.B.; Rushworth, G. The discharge from muscle spindles as an indicator of gamma efferent paralysis by procaine. J. Physiol. 1958, 140, 421–426. [Google Scholar] [CrossRef]
- Prochazka, A. Muscle spindle function during normal movement. Int. Rev. Physiol. 1981, 25, 47–90. [Google Scholar]
- Prochazka, A. Sensorimotor gain control: A basic strategy of motor systems? Prog. Neurobiol. 1989, 33, 281–307. [Google Scholar] [CrossRef]
- Prochazka, A.; Hulliger, M.; Zangger, P.; Appenteng, K. ‘Fusimotor set’: New evidence for alpha-independent control of gamma-motoneurones during movement in the awake cat. Brain Res. 1985, 339, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Vallbo, A.B.; al-Falahe, N.A. Human muscle spindle response in a motor learning task. J. Physiol. 1990, 421, 553–568. [Google Scholar] [CrossRef]
- Prochazka, A. Proprioceptive Feedback and Movement Regulation. In Comprehensive Physiology; John Wiley and Sons: Hoboken, NJ, USA, 2011; pp. 89–127. [Google Scholar]
- Papaioannou, S.; Dimitriou, M. Goal-dependent tuning of muscle spindle receptors during movement preparation. Sci. Adv. 2021, 7, abe0401. [Google Scholar] [CrossRef]
- Prochazka, A. Sensory control of normal movement and of movement aided by neural prostheses. J. Anat. 2015, 227, 167–177. [Google Scholar] [CrossRef]
- Dimitriou, M. Human muscle spindle sensitivity reflects the balance of activity between antagonistic muscles. J. Neurosci. 2014, 34, 13644–13655. [Google Scholar] [CrossRef]
- Lan, N.; He, X. Fusimotor control of spindle sensitivity regulates central and peripheral coding of joint angles. Front. Comput. Neurosci. 2012, 6, 66. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, D.; Engberg, I.; Lundberg, A. Primary afferent depolarization evoked from the brain stem and the cerebellum. Arch. Ital. Biol. 1966, 104, 73–85. [Google Scholar] [PubMed]
- Carpenter, D.; Lundberg, A.; Norrsell, U. Primary Afferent Depolarization Evoked from the Sensorimotor Cortex. Acta Physiol. Scand. 1963, 59, 126–142. [Google Scholar] [CrossRef]
- Eccles, J.C. Presynaptic Inhibition in the Spinal Cord. Prog. Brain Res. 1964, 12, 65–91. [Google Scholar] [CrossRef]
- Eccles, J.C. Presynaptic Inhibition in the Central Nervous System. Acta Physiol. Acad. Sci. Hung. 1965, 26, 163–180. [Google Scholar]
- Hultborn, H.; Meunier, S.; Pierrot-Deseilligny, E.; Shindo, M. Changes in presynaptic inhibition of Ia fibres at the onset of voluntary contraction in man. J. Physiol. 1987, 389, 757–772. [Google Scholar] [CrossRef]
- Seki, K.; Perlmutter, S.I.; Fetz, E.E. Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nat. Neurosci. 2003, 6, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Franklin, D.W.; Liaw, G.; Milner, T.E.; Osu, R.; Burdet, E.; Kawato, M. Endpoint stiffness of the arm is directionally tuned to instability in the environment. J. Neurosci. 2007, 27, 7705–7716. [Google Scholar] [CrossRef]
- Mussa-Ivaldi, F.A.; Hogan, N.; Bizzi, E. Neural, mechanical, and geometric factors subserving arm posture in humans. J. Neurosci. 1985, 5, 2732–2743. [Google Scholar] [CrossRef] [PubMed]
- Akazawa, K.; Milner, T.E.; Stein, R.B. Modulation of reflex EMG and stiffness in response to stretch of human finger muscle. J. Neurophysiol. 1983, 49, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Krutky, M.A.; Ravichandran, V.J.; Trumbower, R.D.; Perreault, E.J. Interactions between limb and environmental mechanics influence stretch reflex sensitivity in the human arm. J. Neurophysiol. 2010, 103, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Seidler-Dobrin, R.D.; Stelmach, G.E. Persistence in visual feedback control by the elderly. Exp. Brain Res. 1998, 119, 467–474. [Google Scholar] [CrossRef]
- Pierrot-Deseilligny, E.; Burke, D.J. The Circuitry of the Human Spinal Cord: Spinal and Corticospinal Mechanisms of Movement; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; p. xxiii. 606p. [Google Scholar]
- Bedingham, W.; Tatton, W.G. Dependence of EMG responses evoked by imposed wrist displacements on pre-existing activity in the stretched muscles. Can. J. Neurol. Sci. 1984, 11, 272–280. [Google Scholar] [CrossRef]
- Weiler, J.; Gribble, P.L.; Pruszynski, J.A. Spinal stretch reflexes support efficient hand control. Nat. Neurosci. 2019, 22, 529–533. [Google Scholar] [CrossRef]
- Kholinne, E.; Zulkarnain, R.F.; Sun, Y.C.; Lim, S.; Chun, J.M.; Jeon, I.H. The different role of each head of the triceps brachii muscle in elbow extension. Acta Orthop. Traumatol. Turc. 2018, 52, 201–205. [Google Scholar] [CrossRef]
- Gottlieb, G.L.; Agarwal, G.C. Response to sudden torques about ankle in man. III. Suppression of stretch-evoked responses during phasic contraction. J. Neurophysiol. 1980, 44, 233–246. [Google Scholar] [CrossRef]
- Bennett, D.J.; Hollerbach, J.M.; Xu, Y.; Hunter, I.W. Time-varying stiffness of human elbow joint during cyclic voluntary movement. Exp. Brain Res. 1992, 88, 433–442. [Google Scholar] [CrossRef]
- Franklin, D.W.; Burdet, E.; Osu, R.; Kawato, M.; Milner, T.E. Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics. Exp. Brain Res. 2003, 151, 145–157. [Google Scholar] [CrossRef]
- Franklin, D.W.; Osu, R.; Burdet, E.; Kawato, M.; Milner, T.E. Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model. J. Neurophysiol. 2003, 90, 3270–3282. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubey, O.; Petrie, M.A.; Shields, R.K. Adaptation of Transcortical Responses in Upper Extremity Movements During an Elbow Visuomotor Tracking Task in Humans. J. Funct. Morphol. Kinesiol. 2025, 10, 368. https://doi.org/10.3390/jfmk10040368
Dubey O, Petrie MA, Shields RK. Adaptation of Transcortical Responses in Upper Extremity Movements During an Elbow Visuomotor Tracking Task in Humans. Journal of Functional Morphology and Kinesiology. 2025; 10(4):368. https://doi.org/10.3390/jfmk10040368
Chicago/Turabian StyleDubey, Olga, Michael A. Petrie, and Richard K. Shields. 2025. "Adaptation of Transcortical Responses in Upper Extremity Movements During an Elbow Visuomotor Tracking Task in Humans" Journal of Functional Morphology and Kinesiology 10, no. 4: 368. https://doi.org/10.3390/jfmk10040368
APA StyleDubey, O., Petrie, M. A., & Shields, R. K. (2025). Adaptation of Transcortical Responses in Upper Extremity Movements During an Elbow Visuomotor Tracking Task in Humans. Journal of Functional Morphology and Kinesiology, 10(4), 368. https://doi.org/10.3390/jfmk10040368