Recovery After an Official Soccer Match: An Analysis of Markers of Muscle Damage and Oxidative Stress, and Endocrine, Neuromuscular and Perceptual Responses
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design
2.3. Blood Biomarkers
2.4. Neuromuscular Status
2.5. Perceived Wellness
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AbsPeakP | Absolute peak power |
C | Cortisol |
CK | Creatine kinase |
CMJ | Countermovement jump |
CRP | C-reactive protein |
DOMS | Delayed onset muscle soreness |
EIMD | Exercise-induced muscle damage |
ES | Effect size |
FT:CT | Flight time to contraction time ratio |
ICC | Intraclass correlation coefficient |
LDH | Lactate dehydrogenase |
PeakRFD | Peak rate of force development |
PropImp | Propulsive impulse |
PropPhDur | Propulsive phase duration |
RelPeakP | Relative peak power |
RSImod | Reactive strength index modified |
T | Testosterone |
TPeakF | Time to peak force |
TTakeOff | Time to take off |
T:C ratio | Testosterone to cortisol ratio |
UA | Uric acid |
References
- Skorski, S.; Mujika, I.; Bosquet, L.; Meeusen, R.; Coutts, A.J.; Meyer, T. The temporal relationship between exercise, recovery processes, and changes in performance. Int. J. Sports Physiol. Perform. 2019, 14, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Carroll, T.J.; Taylor, J.L.; Gandevia, S.C. Recovery of central and peripheral neuromuscular fatigue after exercise. J. Appl. Physiol. 2017, 122, 1068–1076. [Google Scholar] [CrossRef] [PubMed]
- Enoka, R.M.; Baudry, S.; Rudroff, T.; Farina, D.; Klass, M.; Duchateau, J. Unraveling the neurophysiology of muscle fatigue. J. Electromyogr. Kinesiol. 2011, 21, 208–219. [Google Scholar] [CrossRef]
- Mann, T.N.; Lamberts, R.P.; Lambert, M.I. High responders and low responders: Factors associated with individual variation in response to standardized training. Sports Med. 2014, 44, 1113–1124. [Google Scholar] [CrossRef]
- Kellmann, M.; Bertollo, M.; Bosquet, L.; Brink, M.; Coutts, A.J.; Duffield, R.; Erlacher, D.; Halson, S.L.; Hecksteden, A.; Heidari, J.; et al. Recovery and performance in sport: Consensus statement. Int. J. Sports Physiol. Perform. 2018, 13, 240–245. [Google Scholar] [CrossRef]
- Silva, J.R.; Rumpf, M.C.; Hertzog, M.; Castagna, C.; Farooq, A.; Girard, O.; Hader, K. Acute and residual soccer match-related fatigue: A systematic review and meta-analysis. Sports Med. 2018, 48, 539–583. [Google Scholar] [CrossRef]
- Nédélec, M.; McCall, A.; Carling, C.; Legall, F.; Berthoin, S.; Dupont, D.G. Recovery in soccer: Part I—Post-match fatigue and time course of recovery. Sports Med. 2012, 42, 997–1015. [Google Scholar] [CrossRef]
- Marqués-Jiménez, D.; Calleja-González, J.; Arratibel, I.; Delextrat, A.; Terrados, N. Fatigue and recovery in soccer: Evidences and challenges. Open Sports Sci. J. 2017, 10 (Suppl. S1), 52–70. [Google Scholar] [CrossRef]
- Wiig, H.; Cumming, K.T.; Handegaard, V.; Stabell, J.; Spencer, M.; Raastad, T. Muscular heat shock protein response and muscle damage after semi-professional football match. Scand. J. Med. Sci. Sports 2022, 32, 984–996. [Google Scholar] [CrossRef]
- Peake, J.M.; Neubauer, O.; Della Gatta, P.A.; Nosaka, K. Muscle damage and inflammation during recovery from exercise. J. Appl. Physiol. 2017, 122, 559–570. [Google Scholar] [CrossRef]
- Pérez-Castillo, Í.M.; Rueda, R.; Bouzamondo, H.; López-Chicharro, J.; Mihic, N. Biomarkers of post-match recovery in semi-professional and professional football (soccer). Front. Physiol. 2023, 14, 1167449. [Google Scholar] [CrossRef]
- Slimani, M.; Baker, J.S.; Cheour, F.; Taylor, L.; Bragazzi, N.L. Steroid hormones and psychological responses to soccer matches: Insights from a systematic review and meta-analysis. PLoS ONE 2017, 12, e0186100. [Google Scholar] [CrossRef] [PubMed]
- Brownstein, C.G.; Dent, J.P.; Parker, P.; Hicks, K.M.; Howatson, G.; Goodall, S.; Thomas, K. Etiology and recovery of neuromuscular fatigue following competitive soccer match-play. Front. Physiol. 2017, 8, 831. [Google Scholar] [CrossRef] [PubMed]
- Fatouros, I.G.; Chatzinikolaou, A.; Douroudos, I.I.; Nikolaidis, M.G.; Kyparos, A.; Margonis, K.; Michailidis, Y.; Vantarakis, A.; Taxildaris, K.; Katrabasas, I.; et al. Time-course of changes in oxidative stress and antioxidant status responses following a soccer game. J. Strength Cond. Res. 2010, 24, 3278–3286. [Google Scholar] [CrossRef]
- Marqués-Jiménez, D.; Calleja-González, J.; Arratibel-Imaz, I.; Terrados, N. Biochemical and physical performance responses to a soccer match after a 72-hour recovery period. Sports 2022, 10, 140. [Google Scholar] [CrossRef]
- Thorpe, R.; Sunderland, C. Muscle damage, endocrine, and immune marker response to a soccer match. J. Strength Cond. Res. 2012, 26, 2783–2790. [Google Scholar] [CrossRef]
- Jamurtas, A.Z.; Douroudos, I.I.; Deli, C.K.; Draganidis, D.; Chatzinikolaou, A.; Mohr, M.; Avloniti, A.; Barbero-Álvarez, J.C.; Margonis, K.; Mavropalias, G.; et al. Iron status markers are only transiently affected by a football game. J. Sports Sci. 2015, 33, 2088–2099. [Google Scholar] [CrossRef]
- Gathercole, R.; Sporer, B.; Stellingwerff, T.; Sleivert, G. Alternative countermovement-jump analysis to quantify acute neuromuscular fatigue. Int. J. Sports Physiol. Perform. 2015, 10, 84–92. [Google Scholar] [CrossRef]
- Pagaduan, J.C.; Pojskić, H.; Užičanin, E.; Babajić, F. Effect of various warm-up protocols on jump performance in college football players. J. Hum. Kinet. 2012, 35, 127–132. [Google Scholar] [CrossRef]
- Lippi, G.; Banfi, G.; Church, S.; Cornes, M.; De Carli, G.; Grankvist, K.; Kristensen, G.B.; Ibarz, M.; Panteghini, M.; Plebani, M.; et al. Preanalytical quality improvement. In pursuit of harmony, on behalf of European Federation for Clinical Chemistry and Laboratory Medicine (EFLM) Working group for Preanalytical Phase (WG-PRE). Clin. Chem. Lab. Med. 2015, 53, 357–370. [Google Scholar] [CrossRef]
- Marqués-Jiménez, D.; Calleja-González, J.; Arratibel, I.; Terrados, N. Relevant biochemical markers of recovery process in soccer. Arch. Med. Deport. 2016, 33, 404–412. [Google Scholar]
- Haller, N.; Behringer, M.; Reichel, T.; Wahl, P.; Simon, P.; Krüger, K.; Zimmer, P.; Stöggl, T. Blood-based biomarkers for managing workload in athletes: Considerations and recommendations for evidence-based use of established biomarkers. Sports Med. 2023, 53, 1315–1333. [Google Scholar] [CrossRef]
- Claudino, J.G.; Cronin, J.; Mezêncio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrão, J.C. The countermovement jump to monitor neuromuscular status: A meta-analysis. J. Sci. Med. Sport 2017, 20, 397–402. [Google Scholar] [CrossRef]
- Rowell, A.E.; Aughey, R.J.; Hopkins, W.G.; Stewart, A.M.; Cormack, S.J. Identification of sensitive measures of recovery after external load from football match play. Int. J. Sports Physiol. Perform. 2017, 12, 969–976. [Google Scholar] [CrossRef]
- Bishop, C.; Jordan, M.; Torres-Ronda, L.; Loturco, I.; Harry, J.; Virgile, A.; Mundy, P.; Turner, A.; Comfort, P. Selecting metrics that matter: Comparing the use of the countermovement jump for performance profiling, neuromuscular fatigue monitoring, and injury rehabilitation testing. Strength Cond. J. 2023, 45, 545–553. [Google Scholar] [CrossRef]
- Kellmann, M. Preventing overtraining in athletes in high-intensity sports and stress/recovery monitoring. Scand. J. Med. Sci. Sports 2010, 20 (Suppl. S2), 95–102. [Google Scholar] [CrossRef] [PubMed]
- Hooper, S.L.; Mackinnon, L.T. Monitoring overtraining in athletes. Recommendations. Sports Med. 1995, 20, 321–327. [Google Scholar] [CrossRef]
- Atkinson, G.; Nevill, A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 2013. [Google Scholar]
- Hopkins, W.G. A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a P value. Sportscience 2007, 11, 16–20. [Google Scholar]
- Franceschi, A.; Robinson, M.A.; Owens, D.; Brownlee, T.; Ferrari Bravo, D.; Enright, K. Reliability and sensitivity to change of post-match physical performance measures in elite youth soccer players. Front. Sports Act. Living 2023, 5, 1173621. [Google Scholar] [CrossRef]
- Nicol, C.; Avela, J.; Komi, P.V. The stretch-shortening cycle: A model to study naturally occurring neuromuscular fatigue. Sports Med. 2006, 36, 977–999. [Google Scholar] [CrossRef] [PubMed]
- Avela, J.; Kyröläinen, H.; Komi, P.V.; Rama, D. Reduced reflex sensitivity persists several days after long-lasting stretch-shortening cycle exercise. J. Appl. Physiol. 1999, 86, 1292–1300. [Google Scholar] [CrossRef]
- Cheung, K.; Hume, P.; Maxwell, L. Delayed onset muscle soreness: Treatment strategies and performance factors. Sports Med. 2003, 33, 145–164. [Google Scholar] [CrossRef]
- Sonkodi, B.; Berkes, I.; Koltai, E. Have we looked in the wrong direction for more than 100 years? Delayed onset muscle soreness is, in fact, neural microdamage rather than muscle damage. Antioxidants 2020, 9, 212. [Google Scholar] [CrossRef]
Metric | Pre-Match | Post-Match | 24 h Post-Match | 48 h Post-Match | Comparison | p | ES, Magnitude | Qualitative Inference |
---|---|---|---|---|---|---|---|---|
Height (cm) | 41.29 ± 7.56 | 37.80 ± 3.15 | 36.13 ± 4.21 | 37.23 ± 4.90 | Pre–post | 0.093 | −0.67 (moderate) | Likely |
Pre–24 h | 0.007 * | −0.99 (large) | Very likely | |||||
Pre–48 h | 0.045 * | −0.78 (moderate) | Likely | |||||
Post–24 h | 0.788 | −0.32 (small) | Possibly | |||||
Post–48 h | 0.917 | −0.11 (trivial) | Possibly | |||||
24 h–48 h | 0.917 | 0.21 (small) | Possibly | |||||
AbsPeakP (W) | 4107.18 ± 636.53 | 3866.68 ± 645.25 | 4069.29 ± 741.08 | 4030.54 ± 737.37 | Pre–post | 0.062 | −0.35 (small) | Likely |
Pre–24 h | 1.000 | −0.06 (trivial) | Most unlikely | |||||
Pre–48 h | 1.000 | −0.11 (trivial) | Most unlikely | |||||
Post–24 h | 0.144 | 0.29 (small) | Possibly | |||||
Post–48 h | 0.295 | 0.24 (small) | Possibly | |||||
24 h–48 h | 1.000 | −0.06 (trivial) | Most unlikely | |||||
RelPeakP (W·kg−1) | 55.61 ± 5.99 | 52.92 ± 5.59 | 54.49 ± 5.65 | 53.74 ± 6.03 | Pre–post | 0.149 | −0.46 (small) | Likely |
Pre–24 h | 1.000 | −0.19 (trivial) | Most unlikely | |||||
Pre–48 h | 0.562 | −0.32 (small) | Possibly | |||||
Post–24 h | 0.721 | 0.27 (small) | Possibly | |||||
Post–48 h | 1.000 | 0.14 (trivial) | Most unlikely | |||||
24 h–48 h | 1.000 | −0.13 (trivial) | Most unlikely | |||||
PropImp (Ns) | 217.53 ± 53.01 | 196.40 ± 22.31 | 196.69 ± 31.15 | 201.03 ± 28.35 | Pre–post | 0.068 | −0.59 (moderate) | Likely |
Pre–24 h | 0.068 | −0.58 (moderate) | Likely | |||||
Pre–48 h | 0.179 | −0.46 (small) | Possibly | |||||
Post–24 h | 1.000 | 0.01 (trivial) | Most unlikely | |||||
Post–48 h | 1.000 | 0.13 (trivial) | Most unlikely | |||||
24 h–48 h | 1.000 | 0.12 (trivial) | Most unlikely | |||||
PeakRFD (N·s−1) | 15,059.54 ± 9043.17 | 9704.11 ± 4789.14 | 9781.821 ± 3449.47 | 12,897.61 ± 6463.72 | Pre–post | 0.018 * | −0.85 (large) | Very likely |
Pre–24 h | 0.018 * | −0.84 (large) | Very likely | |||||
Pre–48 h | 0.420 | −0.34 (small) | Possibly | |||||
Post–24 h | 0.964 | 0.01 (trivial) | Unlikely | |||||
Post–48 h | 0.268 | 0.51 (moderate) | Possibly | |||||
24 h–48 h | 0.268 | 0.49 (small) | Possibly | |||||
TTakeOff (s) | 0.82 ± 0.13 | 1.01 ± 0.18 | 0.90 ± 0.09 | 0.86 ± 0.18 | Pre–post | 0.001 * | 1.30 (large) | Most likely |
Pre–24 h | 0.298 | 0.54 (moderate) | Likely | |||||
Pre–48 h | 0.730 | 0.30 (small) | Possibly | |||||
Post–24 h | 0.097 | −0.75 (moderate) | Likely | |||||
Post–48 h | 0.017 * | −1.00 (large) | Very likely | |||||
24 h–48 h | 0.730 | −0.25 (small) | Possibly | |||||
PropPhDur (s) | 0.27 ± 0.04 | 0.29 ± 0.05 | 0.31 ± 0.06 | 0.29 ± 0.05 | Pre–post | 0.455 | 0.43 (small) | Possibly |
Pre–24 h | 0.016 * | 0.80 (large) | Very likely | |||||
Pre–48 h | 0.455 | 0.39 (small) | Possibly | |||||
Post–24 h | 0.455 | 0.37 (small) | Possibly | |||||
Post–48 h | 0.865 | −0.04 (trivial) | Possibly | |||||
24 h–48 h | 0.455 | −0.41 (small) | Possibly | |||||
TPeakF (s) | 0.58 ± 0.14 | 0.80 ± 0.18 | 0.69 ± 0.11 | 0.63 ± 0.19 | Pre–post | <0.001 * | 1.37 (large) | Most likely |
Pre–24 h | 0.145 | 0.69 (moderate) | Likely | |||||
Pre–48 h | 0.553 | 0.35 (small) | Possibly | |||||
Post–24 h | 0.145 | −0.68 (moderate) | Likely | |||||
Post–48 h | 0.014 * | −1.02 (large) | Very likely | |||||
24 h–48 h | 0.553 | −0.34 (small) | Possibly | |||||
RSImod | 0.51 ± 0.16 | 0.39 ± 0.10 | 0.42 ± 0.07 | 0.46 ± 0.15 | Pre–post | 0.049 * | −0.93 (large) | Likely |
Pre–24 h | 0.177 | −0.73 (moderate) | Likely | |||||
Pre–48 h | 0.651 | −0.42 (small) | Possibly | |||||
Post–24 h | 0.723 | 0.20 (small) | Possibly | |||||
Post–48 h | 0.533 | 0.51 (moderate) | Possibly | |||||
24 h–48 h | 0.723 | 0.31 (small) | Possibly | |||||
FT:CT | 0.70 ± 0.12 | 0.57 ± 0.13 | 0.62 ± 0.07 | 0.67 ± 0.15 | Pre–post | 0.028 * | −0.99 (large) | Very likely |
Pre–24 h | 0.285 | −0.62 (moderate) | Likely | |||||
Pre–48 h | 0.753 | −0.23 (small) | Possibly | |||||
Post–24 h | 0.753 | 0.38 (small) | Possibly | |||||
Post–48 h | 0.130 | 0.77 (moderate) | Likely | |||||
24 h–48 h | 0.753 | 0.39 (small) | Possibly |
Metric | Pre-Match | Post-Match | 24 h Post-Match | 48 h Post-Match | Comparison | p | ES, Magnitude | Qualitative Inference |
---|---|---|---|---|---|---|---|---|
Fatigue (au) | 2.20 ± 0.68 | 4.40 ± 1.55 | 3.93 ± 1.34 | 2.80 ± 1.21 | Pre–post | <0.001 * | 1.78 (large) | Most likely |
Pre–24 h | <0.001 * | 1.40 (large) | Most likely | |||||
Pre–48 h | 0.240 | 0.49 (small) | Likely | |||||
Post–24 h | 0.240 | −0.38 (small) | Likely | |||||
Post–48 h | <0.001 * | −1.30 (large) | Most likely | |||||
24 h–48 h | 0.014 * | −0.92 (large) | Very likely | |||||
DOMS (au) | 2.40 ± 1.18 | 3.93 ± 1.44 | 4.00 ± 1.31 | 3.00 ± 1.07 | Pre–post | 0.002 * | 1.22 (large) | Most likely |
Pre–24 h | 0.001 * | 1.27 (large) | Most likely | |||||
Pre–48 h | 0.281 | 0.48 (small) | Possibly | |||||
Post–24 h | 0.868 | 0.05 (trivial) | Possibly | |||||
Post–48 h | 0.073 | −0.74 (moderate) | Likely | |||||
24 h–48 h | 0.065 | −0.79 (moderate) | Likely | |||||
Sleep (au) | 2.53 ± 1.13 | NM | 3.20 ± 1.61 | 2.47 ± 1.36 | Pre–24 h | 0.683 | 0.52 (moderate) | Possibly |
Pre–48 h | 1.000 | −0.02 (trivial) | Most unlikely | |||||
24 h–48 h | 0.664 | −0.57 (moderate) | Possibly | |||||
Stress (au) | 2.20 ± 0.94 | 2.67 ± 1.48 | 2.07 ± 0.80 | 2.47 ± 1.25 | Pre–post | 0.844 | 0.41 (small) | Possibly |
Pre–24 h | 1.000 | −0.12 (trivial) | Most unlikely | |||||
Pre–48 h | 1.000 | 0.24 (small) | Most unlikely | |||||
Post–24 h | 0.474 | −0.53 (moderate) | Possibly | |||||
Post–48 h | 1.000 | −0.18 (trivial) | Most unlikely | |||||
24 h–48 h | 0.947 | 0.35 (small) | Possibly |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marqués-Jiménez, D.; Ramirez-Jimenez, M.; Izquierdo, J.M.; Losa-Reyna, J.; Machuca Calvo, D.; López-López, J.; Castillo, D. Recovery After an Official Soccer Match: An Analysis of Markers of Muscle Damage and Oxidative Stress, and Endocrine, Neuromuscular and Perceptual Responses. J. Funct. Morphol. Kinesiol. 2025, 10, 351. https://doi.org/10.3390/jfmk10030351
Marqués-Jiménez D, Ramirez-Jimenez M, Izquierdo JM, Losa-Reyna J, Machuca Calvo D, López-López J, Castillo D. Recovery After an Official Soccer Match: An Analysis of Markers of Muscle Damage and Oxidative Stress, and Endocrine, Neuromuscular and Perceptual Responses. Journal of Functional Morphology and Kinesiology. 2025; 10(3):351. https://doi.org/10.3390/jfmk10030351
Chicago/Turabian StyleMarqués-Jiménez, Diego, Miguel Ramirez-Jimenez, José M. Izquierdo, José Losa-Reyna, Domingo Machuca Calvo, Jorge López-López, and Daniel Castillo. 2025. "Recovery After an Official Soccer Match: An Analysis of Markers of Muscle Damage and Oxidative Stress, and Endocrine, Neuromuscular and Perceptual Responses" Journal of Functional Morphology and Kinesiology 10, no. 3: 351. https://doi.org/10.3390/jfmk10030351
APA StyleMarqués-Jiménez, D., Ramirez-Jimenez, M., Izquierdo, J. M., Losa-Reyna, J., Machuca Calvo, D., López-López, J., & Castillo, D. (2025). Recovery After an Official Soccer Match: An Analysis of Markers of Muscle Damage and Oxidative Stress, and Endocrine, Neuromuscular and Perceptual Responses. Journal of Functional Morphology and Kinesiology, 10(3), 351. https://doi.org/10.3390/jfmk10030351