Acute Effects of Isometric Contraction Distribution on Jump Performance in Volleyball Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Procedure
- ISO-9—Three sets of ICA consisting of 1 repetition of 3 s maximal isometric contractions, with a total ICA duration of 1 set per 3 s = 9 s, including 3-min rest intervals between sets;
- ISO-27—Three sets of ICA, each consisting of 3 repetitions of 3 s maximal isometric contractions, with a total ICA duration of 1 set per 9 s = 27 s, including 3-min rest intervals between sets;
- ISO-45—Three sets of ICA, each consisting of 5 repetitions of 3 s maximal isometric contractions, with a total ICA duration of 1 set per 15 s = 45 s, including 3-min rest intervals between sets.
2.4. Measurement of Countermovement Jump Performance
2.5. Statistical Analyses
3. Results
3.1. Condition Effects
3.2. Repeated Measures Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ICA | Isometric conditioning activity |
PAPE | Post-activation performance enhancement |
CMJ | Countermovement jump |
CTRL | Control condition |
ISO-9 | Condition with 1 repetition of 3 s maximal isometric contractions within a single ICA set |
ISO-27 | Condition with 3 repetitions of 3 s maximal isometric contractions within a single ICA set |
ISO-45 | Condition with 5 repetitions of 3 s maximal isometric contractions within a single ICA set |
JH | Jump height |
PP | Relative peak power output |
RSImod | Modified reactive strength index |
CT | Contraction time |
CD | Countermovement depth |
EPV | Eccentric peak velocity |
S | Stiffness |
References
- Spieszny, M.; Trybulski, R.; Biel, P.; Zając, A.; Krzysztofik, M. Post-isometric back squat performance enhancement of squat and countermovement jump. Int. J. Environ. Res. Public Health 2022, 19, 12720. [Google Scholar] [CrossRef]
- Afonso, J.; Brito, J.; Abade, E.; Rendeiro-Pinho, G.; Baptista, I.; Figueiredo, P.; Nakamura, F.Y. Revisiting the ‘Whys’ and ‘Hows’ of the warm-up: Are we asking the right questions? Sports Med. 2024, 54, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Kilduff, L.P.; Bevan, H.R.; Kingsley, M.I.; Owen, N.J.; Bennett, M.A.; Bunce, P.J.; Cunningham, D.J. Postactivation potentiation in professional rugby players: Optimal recovery. J. Strength Cond. Res. 2007, 21, 1134–1138. [Google Scholar] [CrossRef] [PubMed]
- Prieske, O.; Behrens, M.; Chaabene, H.; Granacher, U.; Maffiuletti, N.A. Time to differentiate postactivation “potentiation” from “performance enhancement” in the strength and conditioning community. Sports Med. 2020, 50, 1559–1565. [Google Scholar] [CrossRef]
- Krzysztofik, M.; Spieszny, M.; Trybulski, R.; Wilk, M.; Pisz, A.; Kolinger, D.; Stastny, P. Acute effects of isometric conditioning activity on the viscoelastic properties of muscles and sprint and jumping performance in handball players. J. Strength Cond. Res. 2023, 37, 1486–1494. [Google Scholar] [CrossRef]
- Seitz, L.B.; Haff, G.G. Factors modulating post-activation potentiation of jump, sprint, throw, and upper-body ballistic performances: A systematic review with meta-analysis. Sports Med. 2016, 46, 231–240. [Google Scholar] [CrossRef] [PubMed]
- McGowan, C.J.; Pyne, D.B.; Thompson, K.G.; Rattray, B. Warm-up strategies for sport and exercise: Mechanisms and applications. Sports Med. 2015, 45, 1523–1546. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Babault, N. Post-activation potentiation versus post-activation performance enhancement in humans: Historical perspective, underlying mechanisms, and current issues. Front. Physiol. 2019, 10, 1359. [Google Scholar] [CrossRef]
- Tsoukos, A.; Bogdanis, G.C.; Terzis, G.; Veligekas, P. Acute improvement of vertical jump performance after isometric squats depends on knee angle and vertical jumping ability. J. Strength Cond. Res. 2016, 30, 2250–2257. [Google Scholar] [CrossRef]
- French, D.N.; Kraemer, W.J.; Cooke, C.B. Changes in dynamic exercise performance following a sequence of preconditioning isometric muscle actions. J. Strength Cond. Res. 2003, 17, 678–685. [Google Scholar]
- Vargas-Molina, S.; Salgado-Ramírez, U.; Chulvi-Medrano, I.; Carbone, L.; Maroto-Izquierdo, S.; Benítez-Porres, J. Comparison of post-activation performance enhancement (PAPE) after isometric and isotonic exercise on vertical jump performance. PLoS One 2021, 16, e0260866. [Google Scholar] [CrossRef] [PubMed]
- Garbisu-Hualde, A.; Gutierrez, L.; Fernández-Peña, E.; Santos-Concejero, J. Intermittent voluntary isometric contractions effects on performance enhancement and sticking region kinematics in the bench press. J. Hum. Kinet. 2023, 87, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Koźlenia, D.; Domaradzki, J. The effectiveness of isometric protocols using an external load or voluntary effort on jump height enhancement in trained females. Sci. Rep. 2023, 13, 13535. [Google Scholar] [CrossRef]
- Koźlenia, D.; Domaradzki, J. Effects of post-activation protocols based on slow tempo bodyweight squat and isometric activity on vertical jump height enhancement in trained males: A randomized controlled trial. PeerJ 2023, 11, e15753. [Google Scholar] [CrossRef]
- Lum, D.; Yang Ong, K.; Haischer, M.H. Postactivation performance enhancement with maximal isometric contraction on power-clean performance across multiple sets. Int. J. Sports Physiol. Perform. 2024, 19, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Jarosz, J.; Gawel, D.; Socha, I.; Ewertowska, P.; Wilk, M.; Lum, D.; Krzysztofik, M. Acute effects of isometric conditioning activity with different set volumes on countermovement jump performance in highly trained male volleyball players. Appl. Sci. 2025, 15, 2393. [Google Scholar] [CrossRef]
- Jarosz, J.; Drozd, M.; Gawel, D.; Wilk, M.; Helbin, J.; Krzysztofik, M. Acute effects of isometric conditioning activity with different distribution contraction on countermovement jump performance in resistance trained participants. Sci. Rep. 2025, 15, 16960. [Google Scholar] [CrossRef]
- Koźlenia, D.; Domaradzki, J. Postsubmaximal isometric full squat jump potentiation in trained men. J. Strength Cond. Res. 2024, 38, 459–464. [Google Scholar] [CrossRef]
- Xu, K.; Blazevich, A.J.; Boullosa, D.; Ramirez-Campillo, R.; Yin, M.; Zhong, Y.; Wang, R. Optimizing post-activation performance enhancement in athletic tasks: A systematic review with meta-analysis for prescription variables and research methods. Sports Med. 2025, 55, 977–1008. [Google Scholar] [CrossRef]
- Bogdanis, G.C.; Tsoukos, A.; Veligekas, P.; Tsolakis, C.; Terzis, G. Effects of muscle action type with equal impulse of conditioning activity on postactivation potentiation. J. Strength Cond. Res. 2014, 28, 2521–2528. [Google Scholar] [CrossRef]
- Kasabalis, A.; Douda, H.; Tokmakidis, S.P. Relationship between anaerobic power and jumping of selected male volleyball players of different ages. Percept. Mot. Skills 2005, 100, 607–614. [Google Scholar] [CrossRef]
- Vuorinen, K. Modern Volleyball Analysis and Training Periodization; University of Jyväskylä: Jyväskylän yliopisto, Finnland, 2025. [Google Scholar]
- Tillin, N.A.; Folland, J.P. Maximal and explosive strength training elicit distinct neuromuscular adaptations, specific to the training stimulus. Eur. J. Appl. Physiol. 2014, 114, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Balshaw, T.; Massey, G.J.; Maden-Wilkinson, T.M.; Tillin, N.A.; Folland, J.P. Training-specific functional, neural, and hypertrophic adaptations to explosive- vs. sustained-contraction strength training. J. Appl. Physiol. 2016, 120, 1364–1373. [Google Scholar] [CrossRef] [PubMed]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining training and performance caliber: A participant classification framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- McNair, P.J.; Depledge, J.; Brettkelly, M.; Stanley, S.N. Verbal encouragement: Effects on maximum effort voluntary muscle action. Br. J. Sports Med. 1996, 30, 243–245. [Google Scholar] [CrossRef]
- Collings, T.J.; Lima, Y.L.; Dutaillis, B.; Bourne, M.N. Concurrent validity and test–retest reliability of VALD ForceDecks’ strength, balance, and movement assessment tests. J. Sci. Med. Sport 2024, 27, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Heishman, A.D.; Daub, B.D.; Miller, R.M.; Freitas, E.D.S.; Frantz, B.A.; Bemben, M.G. Countermovement jump reliability performed with and without an arm swing in NCAA Division 1 intercollegiate basketball players. J. Strength Cond. Res. 2020, 34, 546–558. [Google Scholar] [CrossRef]
- Ng, C.Y.; Chen, S.E.; Lum, D. Inducing postactivation potentiation with different modes of exercise. Strength Cond. J. 2020, 42, 63–81. [Google Scholar] [CrossRef]
- Silva, J.R.; Magalhães, J.F.; Ascensão, A.A.; Oliveira, E.M.; Seabra, A.F.; Rebelo, A.N. Individual match playing time during the season affects fitness-related parameters of male professional soccer players. J. Strength Cond. Res. 2011, 25, 2729–2739. [Google Scholar] [CrossRef]
- Wilson, J.M.; Duncan, N.M.; Marin, P.J.; Brown, L.E.; Loenneke, J.P.; Wilson, S.M.; Jo, E.; Lowery, R.P.; Ugrinowitsch, C. Meta-analysis of postactivation potentiation and power: Effects of conditioning activity, volume, gender, rest periods, and training status. J. Strength Cond. Res. 2013, 27, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Lamont, H.S.; Moir, G.L. Understanding vertical jump potentiation: A deterministic model. Sports Med. 2016, 46, 809–828. [Google Scholar] [CrossRef] [PubMed]
Age [Years] | 27 ± 4 |
Body mass [kg] | 91 ± 13 |
Body fat [%] | 9.9 ± 2.2 |
Body height [cm] | 196 ± 8 |
Resistance training experience [years] | 9.7 ± 4.2 |
Relative of 1RM BS [kg/bm] | 1.48 ± 0.2 |
Group | Baseline | 3 Min | 6 Min | 9 Min | 12 Min | |
---|---|---|---|---|---|---|
Jump Height [cm] | CTRL ISO-9 ISO-27 ISO-45 | 40.7 ± 4.4 39.9 ± 3.7 42.5 ± 3.7 ^# 40.8 ± 4.3 # | 41.0 ± 3.9 41.1 ± 3.6 42.1 ± 4.7 ^# 44.1 ± 4.5 # | 41.5 ± 4.0 40.8 ± 3.8 42.4 ± 3.8 ^# 42.0 ± 3.5 # | 42.3 ± 4.0 * 41.3 ± 5.4 * 3.7 ± 4.2 *^# 41.8 ± 3.1 *# | 41.9 ± 4.4 * 41.2 ± 4.8 * 43.7 ± 4.3 *^# 43.1 ± 4.0 *# |
Variable | Group | 3 Min | 6 Min | 9 Min | 12 Min | Time Effect |
---|---|---|---|---|---|---|
∆% JH | CTRL | 0.41 (−6.04–12.98) | 1.27 (−6.12–16.58) | 5.25 (−6.54–18.69) | 1.21 (−8.07–22.10) | p > 0.05 |
ISO-9 | 3.53 (−7.33–12.14) | 1.52 (−10.12–20.52) | 0.38 (−9.62–22.54) | −1.67 (−7.86–14.95) | p > 0.05 | |
ISO-27 | −1.67 (−7.86–14.95) | 0.28 (−7.64–5.04) | 2.40 (−4.32–10.72) | 0.78 (−4.91–19.59) | p > 0.05 | |
ISO-45 | 8.60 (−6.21–23.51) | 3.50 (−5.83–10.59) | 3.15 (−6.65–19.46) | 4.54 (−5.32–17.67) | χ2(4) = 10.90, p = 0.028 | |
Condition Effect | χ2(3) = 9.36, p = 0.025, ε2 = 0.199 | p > 0.05 | p > 0.05 | χ2(3) = 8.01, p = 0.046, ε2 = 0.170 | ||
∆% PP | CTRL | 0.66 (−6.92–15.02) | 0.49 (−3.29–9.32) | 2.17 (−7.34–15.10) | −0.39 (−8.15–13.88) | p > 0.05 |
ISO-9 | 1.27 (−6.45–10.83) | −0.26 (−6.94–12.20) | 2.03 (−7.92–15.10) | 0.62 (−8.29–11.19) | p > 0.05 | |
ISO-27 | −2.71 (−5.56–9.01) | −1.18 (−6.45–4.98) | 2.04 (−8.42–7.36) | −0.52 (−8.89–12.38) | p > 0.05 | |
ISO-45 | 4.20 (−3.21–18.23) | 2.77 (−3.37–8.18) | 2.27 (−5.46–17.20) | 2.54 (−6.42–15.07) | χ2(4) = 14.90, p = 0.01 | |
Condition Effect | χ2(3) = 12.08, p = 0.007, ε2 = 0.257 | p > 0.05 | p > 0.05 | p > 0.05 | ||
∆% RSImod | CTRL | 4.75 (−9.80–34.15) | 2.22 (−10.94–54.35) | 7.83 (−15.62–34.78) | 3.65 (−19.61–60.87) | p > 0.05 |
ISO-9 | 8.13 (−5.26–23.53) | 8.41 (−6.00–27.03) | 11.42 (−10.26–29.41) | 5.03 (−7.69–23.53) | χ2(4) = 11.50, p = 0.02 | |
ISO-27 | −3.99 (−22.81–20.46) | −2.78 (−17.86–13.64) | −1.47 (−18.18–34.09) | 7.04 (−14.55–26.53) | p > 0.05 | |
ISO-45 | 12.69 (−20.63–34.69) | 8.98 (−25.40–18.61) | 4.60 (−4.84–21.95) | 6.49 (−5.77–19.51) | p > 0.05 | |
Condition Effect | p > 0.05 | χ2(3) = 7.98, p = 0.046, ε2 = 0.170 | p > 0.05 | p > 0.05 | ||
∆% CT | CTRL | −1.13 (−24.41–12.49) | −0.77 (−34.84–6.52) | −2.61 (−25.54–9.54) | 1.80 (−36.62–12.73) | p > 0.05 |
ISO-9 | −3.49 (−14.32–3.30) | −5.53 (−11.37–3.11) | −8.67 (−15.84–0.92) | −1.61 (−9.55–5.97) | χ2(4) = 22.90, p < 0.01 | |
ISO-27 | 2.36 (−16.80–27.75) | 3.59 (−12.71–15.94) | 7.06 (−21.34–20.74) | −1.25 (−16.35–11.80) | p > 0.05 | |
ISO-45 | −0.73 (−8.05–22.27) | −4.22 (−12.01–25.21) | −0.74 (−20.39–6.98) | −0.66 (−10.73–10.92) | p > 0.05 | |
Condition Effect | p > 0.05 | χ2(3) = 7.83, p = 0.050, ε2 = 0.167 | χ2(3) = 12.36, p = 0.006, ε2 = 0.263 | p > 0.05 |
Variable | Group | 3 Min | 6 Min | 9 Min | 12 Min | Time Effect |
---|---|---|---|---|---|---|
∆% CD | CTRL | 0.88 (−20.36–15.16) | 3.59 (−9.77–11.75) | 3.92 (−9.74–13.66) | 4.02 (−4.64–24.49) | p > 0.05 |
ISO-9 | −1.97 (−12.61–16.51) | 2.12 (−11.28–17.76) | −1.54 (−9.74–19.63) | 6.63 (−24.78–22.74) | p > 0.05 | |
ISO-27 | 4.24 (−10.60–13.37) | 2.75 (−10.73–14.38) | 1.33 (−10.24–23.63) | 4.77 (−20.24–17.27) | p > 0.05 | |
ISO-45 | −2.61 (−11.21–8.54) | 3.04 (−7.35–8.84) | −0.24 (−12.62–12.81) | 3.81 (−7.67–20.33) | p > 0.05 | |
∆% EPV | CTRL | −1.84 (−16.78–49.44) | 6.27 (−7.69–61.05) | 3.24 (−8.76–66.32) | 0.00 (−8.80–74.74) | p > 0.05 |
ISO-9 | 3.89 (−14.29–29.55) | 4.16 (−17.69–39.77) | 5.66 (−8.76–40.35) | 8.77 (−27.21–35.23) | p > 0.05 | |
ISO-27 | 2.79 (−24.58–29.57) | 3.41 (−17.37–25.51) | −1.51 (−20.37–28.57) | 7.85 (−12.57–33.04) | p > 0.05 | |
ISO-45 | −1.71 (−32.28–13.99) | 6.26 (−29.92–21.24) | 3.01 (−17.07–17.36) | 4.34 (−12.80–42.98) | χ2(4) = 12.30, p = 0.02 | |
∆% S | CTRL | −1.53 (−10.58–44.63) | 0.69 (−14.23–12.62) | −2.21 (−13.81–13.72) | 1.15 (−17.74–19.29) | p > 0.05 |
ISO-9 | 6.19 (−13.09–18.15) | 1.71 (−18.08–18.27) | 7.17 (−6.62–13.57) | −2.01 (−17.23–36.85) | p > 0.05 | |
ISO-27 | −1.39 (−18.22–19.92) | −0.94 (−15.43–9.17) | −2.58 (−20.11–16.79) | −1.45 (−17.77–22.78) | p > 0.05 | |
ISO-45 | 2.80 (−14.48–13.56) | 1.55 (−13.89–16.88) | 1.99 (−13.18–21.21) | 3.21 (−16.54–15.10) | p > 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helbin, J.; Gawel, D.; Terbalyan, A.; Wilk, M.; Krzysztofik, M.; Lum, D.; Jarosz, J. Acute Effects of Isometric Contraction Distribution on Jump Performance in Volleyball Players. J. Funct. Morphol. Kinesiol. 2025, 10, 343. https://doi.org/10.3390/jfmk10030343
Helbin J, Gawel D, Terbalyan A, Wilk M, Krzysztofik M, Lum D, Jarosz J. Acute Effects of Isometric Contraction Distribution on Jump Performance in Volleyball Players. Journal of Functional Morphology and Kinesiology. 2025; 10(3):343. https://doi.org/10.3390/jfmk10030343
Chicago/Turabian StyleHelbin, Jonatan, Dawid Gawel, Artur Terbalyan, Michal Wilk, Michal Krzysztofik, Danny Lum, and Jakub Jarosz. 2025. "Acute Effects of Isometric Contraction Distribution on Jump Performance in Volleyball Players" Journal of Functional Morphology and Kinesiology 10, no. 3: 343. https://doi.org/10.3390/jfmk10030343
APA StyleHelbin, J., Gawel, D., Terbalyan, A., Wilk, M., Krzysztofik, M., Lum, D., & Jarosz, J. (2025). Acute Effects of Isometric Contraction Distribution on Jump Performance in Volleyball Players. Journal of Functional Morphology and Kinesiology, 10(3), 343. https://doi.org/10.3390/jfmk10030343