Decoding the Contribution of Shoulder and Elbow Mechanics to Barbell Kinematics and the Sticking Region in Bench and Overhead Press Exercises: A Link-Chain Model with Single- and Two-Joint Muscles
Abstract
1. Introduction
- •
- Explain the conditions that lead to the emergence of a sticking region during a lift.
- •
- Highlight the respective contributions of shoulder and elbow torques to barbell kinematics across different phases of the movement.
- •
- Identify the kinematic (joint angles, angular velocities, and accelerations) and dynamic (muscle forces, moments, external load, and barbell reaction forces) parameters that influence joint loads at the shoulder and elbow.
- •
- Describe how the mechanical constraint imposed by the barbell affects all the above parameters.
- •
- Reproduce the experimental barbell velocity patterns reported in the literature.
2. Materials and Methods
2.1. The Biomechanical Model
2.2. The Barbell Constraint
2.3. Dynamic Equations of Link 2
2.4. Dynamic Equations of Link 1
2.5. Numerical Simulation
2.6. Experimental Data
3. Results
3.1. Kinematics
3.2. Static Analysis
3.3. Dynamic Analysis
3.4. Comparison with Experimental Data
4. Discussion
4.1. Practical Applications
4.2. Comparison with Experimental Data
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Haff, G.G.; Triplett, N.T. Essentials of Strength Training and Conditioning, 4th ed.; Human Kinetics: Champaign, IL, USA, 2021. [Google Scholar]
- Evangelista, P. Power Mechanics for Power Lifters; Sandro Ciccarelli Editore: Firenze, Italy, 2021; pp. 226–228. [Google Scholar]
- Coratella, G.; Tornatore, G.; Longo, S.; Esposito, F.; Cè, E. Front vs. Back and Barbell vs. Machine Overhead Press: An Electromyographic Analysis and Implications For Resistance Training. Front. Physiol. 2022, 13, 825880. [Google Scholar] [CrossRef]
- Melani, A.; Gobbi, G.; Galli, D.; Carubbi, C.; Masselli, E.; Neri, L.M.; Giovinco, G.; Cicchella, A.; Galuppo, L.; Presta, V.; et al. Muscle Activation in Traditional and Experimental Barbell Bench Press Exercise: A Potential New Tool for Fitness Maintenance. Sports 2019, 7, 224. [Google Scholar] [CrossRef]
- Behm, D.G.; Colado, J.C.; Colado, J.C. Instability resistance training across the exercise continuum. Sports Health. 2013, 5, 500–503. [Google Scholar] [CrossRef]
- Biscarini, A.; Contemori, S.; Grolla, G. Activation of Scapular and Lumbopelvic Muscles During Core Exercises Executed on a Whole-Body Wobble Board. J. Sport Rehabil. 2019, 28, 623–634. [Google Scholar] [CrossRef] [PubMed]
- van den Hoek, D.J.; Beaumont, P.L.; van den Hoek, A.K.; Owen, P.J.; Garrett, J.M.; Buhmann, R.; Latella, C. Normative data for the squat, bench press and deadlift exercises in powerlifting: Data from 809,986 competition entries. J. Sci. Med. Sport. 2024, 27, 734–742. [Google Scholar] [CrossRef]
- Biscarini, A.; Calandra, A.; Contemori, S. Three-dimensional mechanical modeling of the barbell bench press exercise: Unveiling the biomechanical function of the triceps brachii. Proc. IMechE Part P J. Sports Eng. Technol. 2020, 234, 245–256. [Google Scholar] [CrossRef]
- Biscarini, A. Minimization of the knee shear joint load in leg-extension equipment. Med. Eng. Phys. 2008, 30, 1032–1041. [Google Scholar] [CrossRef]
- ACSM. ACSM’s Resource Manual for Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012. [Google Scholar]
- Elliott, B.C.; Wilson, G.J.; Kerr, G.K. A biomechanical analysis of the sticking region in the bench press. Med. Sci. Sports Exerc. 1989, 21, 450–462. [Google Scholar] [CrossRef]
- Stastny, P.; Gołaś, A.; Blazek, D.; Maszczyk, A.; Wilk, M.; Pietraszewski, P.; Petr, M.; Uhlir, P.; Zając, A. A systematic review of surface electromyography analyses of the bench press movement task. PLoS ONE 2017, 12, e0171632. [Google Scholar] [CrossRef] [PubMed]
- López-Vivancos, A.; González-Gálvez, N.; Orquín-Castrillón, F.J.; Vale, R.G.d.S.; Marcos-Pardo, P.J. Electromyographic Activity of the Pectoralis Major Muscle during Traditional Bench Press and Other Variants of Pectoral Exercises: A Systematic Review and Meta-Analysis. Appl. Sci. 2023, 13, 5203. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Gorostiaga, E.M.; Pareja-Blanco, F. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur. J. Sport Sci. 2014, 14, 772–781. [Google Scholar] [CrossRef]
- García-Ramos, A.; Pestaña-Melero, F.L.; Pérez-Castilla, A.; Rojas, F.J.; Haff, G.G. Differences in the Load-Velocity Profile Between 4 Bench-Press Variants. Int. J. Sports Physiol. Perform. 2018, 13, 326–331. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Alcazar, J.; Cornejo-Daza, P.J.; Sánchez-Valdepeñas, J.; Rodriguez-Lopez, C.; Hidalgo-de Mora, J.; Sánchez-Moreno, M.; Bachero-Mena, B.; Alegre, L.M.; Ortega-Becerra, M. Effects of velocity loss in the bench press exercise on strength gains, neuromuscular adaptations, and muscle hypertrophy. Scand J. Med. Sci. Sports. 2020, 30, 2154–2166. [Google Scholar] [CrossRef] [PubMed]
- Padulo, J.; Laffaye, G.; Chaouachi, A.; Chamari, K. Bench press exercise: The key points. J. Sports Med. Phys. Fitness 2015, 55, 604–608. [Google Scholar]
- Saeterbakken, A.H.; Mo, D.A.; Scott, S.; Andersen, V. The Effects of Bench Press Variations in Competitive Athletes on Muscle Activity and Performance. J. Hum. Kinet. 2017, 57, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.; Gomo, O.; van den Tillaar, R. A biomechanical analysis of wide, medium, and narrow grip width effects on kinematics, horizontal kinetics, and muscle activity on the sticking region in recreationally trained males during 1-rm bench pressing. Front. Sports Act. Living 2021, 2, 637066. [Google Scholar] [CrossRef]
- Mausehund, L.; Werkhausen, A.; Bartsch, J.; Krosshaug, T. Understanding bench press biomechanics-The necessity of measuring lateral barbell forces. J. Strength Cond. Res. 2022, 36, 2685–2695. [Google Scholar] [CrossRef] [PubMed]
- Noteboom, L.; Belli, I.; Hoozemans, M.J.M.; Seth, A.; Veeger, H.E.J.; Van Der Helm, F.C.T. Effects of bench press technique variations on musculoskeletal shoulder loads and potential injury risk. Front. Physiol. 2024, 15, 1393235. [Google Scholar] [CrossRef]
- Wesseling, M.; Derikx, L.C.; de Groote, F.; Bartels, W.; Meyer, C.; Verdonschot, N.; Jonkers, I. Muscle optimization techniques impact the magnitude of calculated hip joint contact forces. J. Orthop. Res. 2015, 33, 430–438. [Google Scholar] [CrossRef]
- Gerus, P.; Sartori, M.; Besier, T.F.; Fregly, B.J.; Delp, S.L.; Banks, S.A.; Pandy, M.G.; D’Lima, D.D.; Lloyd, D.G. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J. Biomech. 2013, 46, 2778–2786. [Google Scholar] [CrossRef]
- Lander, J.E.; Bates, B.T.; Sawhill, J.A.; Hamill, J. A comparison between free-weight and isokinetic bench pressing. Med. Sci. Sports Exerc. 1985, 17, 344–353. [Google Scholar] [CrossRef] [PubMed]
- van den Tillaar, R.; Ettema, G. The “sticking period” in a maximum bench press. J. Sports Sci. 2010, 28, 529–535. [Google Scholar] [CrossRef]
- van den Tillaar, R.; Saeterbakken, A.H.; Ettema, G. Is the occurrence of the sticking region the result of diminishing potentiation in bench press? J. Sports Sci. 2012, 30, 591–599. [Google Scholar] [CrossRef] [PubMed]
- van den Tillaar, R.; Saeterbakken, A.H. Fatigue effects upon sticking region and electromyography in a six-repetition maximum bench press. J. Sports Sci. 2013, 31, 1823–1830. [Google Scholar] [CrossRef]
- Kompf, J.; Arandjelović, O. Understanding and Overcoming the Sticking Point in Resistance Exercise. Sports Med. 2016, 46, 751–762. [Google Scholar] [CrossRef]
- Lockie, R.G.; Callaghan, S.J.; Moreno, M.R.; Risso, F.G.; Liu, T.M.; Stage, A.A.; Birmingham-Babauta, S.A.; Stokes, J.J.; Giuliano, D.V.; Lazar, A.; et al. An Investigation of the Mechanics and Sticking Region of a One-Repetition Maximum Close-Grip Bench Press versus the Traditional Bench Press. Sports 2017, 5, 46. [Google Scholar] [CrossRef]
- Martínez-Cava, A.; Morán-Navarro, R.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Conesa-Ros, E.; González-Badillo, J.J.; Pallarés, J.G. Range of motion and sticking region effects on the bench press load-velocity relationship. J. Sports Sci. Med. 2019, 18, 645–652. [Google Scholar]
- Zatsiorsky, V.M. Kinetics of Human Motion; Human Kinetics: Champaign, IL, USA, 2002. [Google Scholar]
- Enoka, R.M. Neuromechanics of Human Movement; Human Kinetics: Champaign, IL, USA, 2015. [Google Scholar]
- Craig, J.J. Introduction to Robotics: Mechanics and Control, 3rd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics Modelling, Planning and Control; Springer: London, UK, 2009. [Google Scholar]
- Rahmani, A.; Rambaud, O.; Bourdin, M.; Mariot, J.P. A virtual model of the bench press exercise. J. Biomech. 2009, 42, 1610–1615. [Google Scholar] [CrossRef]
- Sánchez-Salinas, S.; Núñez Torres, C.; López-Martínez, J.; García-Vallejo, D.; Muyor, J. Design and analysis of a constant-force bench press. Mech. Mach. Theory 2019, 142, 103612. [Google Scholar] [CrossRef]
- Sánchez-Salinas, S.; García-Vallejo, D.; López-Martínez, J.; Muyor, J. Design of trajectories and torques by parameter optimization for the bench press exercise on a Smith machine. Mech. Mach. Theory 2021, 155, 104089. [Google Scholar] [CrossRef]
- Cleland, J. On the actions of muscles passing over more than one joint. J. Anat. Physiol. 1867, 1, 85–93. [Google Scholar]
- Biscarini, A. Non-Slender n-Link Chain Driven by Single-Joint and Multi-Joint Muscle Actuators: Closed-Form Dynamic Equations and Joint Reaction Forces. Appl. Sci. 2021, 11, 6860. [Google Scholar] [CrossRef]
- Available online: https://strengthlevel.com/strength-standards (accessed on 11 August 2025).
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 3rd ed.; Wiley: New York, NY, USA, 2005; pp. 60–64. [Google Scholar]
- Rum, L.; Sciarra, T.; Balletti, N.; Lazich, A.; Bergamini, E. Validation of an Automatic Inertial Sensor-Based Methodology for Detailed Barbell Velocity Monitoring during Maximal Paralympic Bench Press. Sensors 2022, 22, 9904. [Google Scholar] [CrossRef]
- Keogh, E.; Ratanamahatana, C.A. Exact indexing of dynamic time warping. Knowl. Inf. Syst. 2005, 7, 358–386. [Google Scholar] [CrossRef]
- Dau, H.A.; Silva, D.F.; Petitjean, F.; Forestier, G.; Bagnall, A.; Mueen, A.; Keogh, E. Optimizing dynamic time warping’s window width for time series data mining applications. Data Min. Knowl. Disc. 2018, 32, 1074–1120. [Google Scholar] [CrossRef]
- Good, P. Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses; Springer: New York, NY, USA, 2000. [Google Scholar]
- Salvador, S.; Chan, P. Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 2007, 11, 561–580. [Google Scholar] [CrossRef]
- Fleury, A.M.; Silva, A.C.; de Castro Pochini, A.; Ejnisman, B.; Lira, C.A.; Andrade, M.S. Isokinetic muscle assessment after treatment of pectoralis major muscle rupture using surgical or non-surgical procedures. Clinics 2011, 66, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Knapik, J.J.; Wright, J.E.; Mawdsley, R.H.; Braun, J. Isometric, isotonic, and isokinetic torque variations in four muscle groups through a range of joint motion. Phys. Ther. 1983, 63, 938–947. [Google Scholar] [CrossRef] [PubMed]
- Ivey, F.M.; Calhoun, J.H.; Rusche, K.; Bierschenk, J. Isokinetic testing of shoulder strength: Normal values. Arch. Phys. Med. Rehabil. 1985, 66, 384–386. [Google Scholar] [CrossRef]
- Kulig, K.; Andrews, J.G.; Hay, J.G. Human strength curves. Exerc. Sport Sci. Rev. 1984, 12, 417–466. [Google Scholar] [CrossRef]
- Duffey, M.J.; Challis, J.H. Fatigue effects on bar kinematics during the bench press. J. Strength Cond. Res. 2007, 21, 556–560. [Google Scholar]
- van den Tillaar, R.; Ettema, G.A. comparison of successful and unsuccessful attempts in maximal bench pressing. Med. Sci. Sports Exerc. 2009, 41, 2056–2063. [Google Scholar] [CrossRef]
- Król, H.; Golas, A.; Sobota, G. Complex analysis of movement in evaluation of flat bench press performance. Acta Bioeng. Biomech. 2010, 12, 93–98. [Google Scholar] [PubMed]
- van den Tillaar, R.; Ettema, G. A comparison of muscle activity in concentric and counter movement maximum bench press. J. Hum. Kinet. 2013, 38, 63–71. [Google Scholar] [CrossRef]
- Newton, R.U.; Kraemer, W.J. Developing explosive muscular power: Implications for a mixed methods training strategy. Strength Cond. J. 1994, 16, 20–31. [Google Scholar] [CrossRef]
- Prilutsky, B.I.; Zatsiorsky, V.M. Optimization-based models of muscle coordination. Exerc. Sport Sci. Rev. 2002, 30, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Tsirakos, D.; Baltzopoulos, V.; Bartlett, R. Review of Inverse Optimization for Functional and Physiological Considerations Related to the Force-Sharing Problem. Crit. Rev. Biomed. Eng. 2017, 45, 511–547. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evangelista, P.; Rum, L.; Picerno, P.; Biscarini, A. Decoding the Contribution of Shoulder and Elbow Mechanics to Barbell Kinematics and the Sticking Region in Bench and Overhead Press Exercises: A Link-Chain Model with Single- and Two-Joint Muscles. J. Funct. Morphol. Kinesiol. 2025, 10, 322. https://doi.org/10.3390/jfmk10030322
Evangelista P, Rum L, Picerno P, Biscarini A. Decoding the Contribution of Shoulder and Elbow Mechanics to Barbell Kinematics and the Sticking Region in Bench and Overhead Press Exercises: A Link-Chain Model with Single- and Two-Joint Muscles. Journal of Functional Morphology and Kinesiology. 2025; 10(3):322. https://doi.org/10.3390/jfmk10030322
Chicago/Turabian StyleEvangelista, Paolo, Lorenzo Rum, Pietro Picerno, and Andrea Biscarini. 2025. "Decoding the Contribution of Shoulder and Elbow Mechanics to Barbell Kinematics and the Sticking Region in Bench and Overhead Press Exercises: A Link-Chain Model with Single- and Two-Joint Muscles" Journal of Functional Morphology and Kinesiology 10, no. 3: 322. https://doi.org/10.3390/jfmk10030322
APA StyleEvangelista, P., Rum, L., Picerno, P., & Biscarini, A. (2025). Decoding the Contribution of Shoulder and Elbow Mechanics to Barbell Kinematics and the Sticking Region in Bench and Overhead Press Exercises: A Link-Chain Model with Single- and Two-Joint Muscles. Journal of Functional Morphology and Kinesiology, 10(3), 322. https://doi.org/10.3390/jfmk10030322