Wearable Sensor Assessment of Gait Characteristics in Individuals Awaiting Total Knee Arthroplasty: A Cross-Sectional, Observational Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumentations
2.3. Data Collection Protocol
2.4. Data Analysis
- Global analysis parameters
- Cadence (steps/min): number of steps taken per minute.
- Speed (m/s): average walking velocity.
- Symmetry index of the gait cycle: this index measures the percentage of symmetry between the anterior and posterior acceleration curves during the right and left gait cycles.
- Symmetry index of pelvic angles (tilt, obliquity, rotation): This index assesses the percentage similarity or difference in pelvic movements recorded during the right and left gait cycles. These angles were measured in three anatomical planes—sagittal (tilt), frontal (obliquity), and transverse (rotation) planes.
- 2.
- Side-specific parameters (Left and Right)
- Stride length (m): the average distance covered between consecutive initial contacts of the same foot.
- Stride length as a percentage of height (% height): normalized stride length relative to the participant’s height.
- Gait cycle duration (s): time interval between two consecutive heel strikes of the same foot.
- Step length (% stride length): the average distance between the initial foot contact and the next contact made by the opposite foot.
- Stance phase (% cycle): percentage of the gait cycle during which the foot remains in contact with the ground.
- Swing phase (% cycle): the percentage of the gait cycle during which the foot is in motion and not in contact with the ground.
- Double support phase (% cycle): percentage of the gait cycle in which both feet are simultaneously in contact with the ground.
- Single support phase (% cycle): percentage of the gait cycle in which only one foot is in contact with the ground.
- Elaborated steps: total number of strides considered in the analysis.
- Propulsion index: represents the inclination of the line following the rising edge of the acceleration pattern.
- 3.
- Walk quality index
2.5. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gianzina, E.; Kalinterakis, G.; Delis, S.; Vlastos, I.; Platon Sachinis, N.; Yiannakopoulos, C.K. Evaluation of gait recovery after total knee arthroplasty using wearable inertial sensors: A systematic review. Knee 2023, 41, 190–203. [Google Scholar] [CrossRef]
- Liao, T.C.; Samaan, M.A.; Popovic, T.; Neumann, J.; Zhang, A.L.; Link, T.M.; Majumdar, S.; Souza, R.B. Abnormal joint loading during gait in persons with hip osteoarthritis is associated with symptoms and cartilage lesions. J. Orthop. Sports Phys. Ther. 2019, 49, 917–924. [Google Scholar] [CrossRef]
- Wada, S.; Murakami, H.; Tajima, G.; Maruyama, M.; Sugawara, A.; Oikawa, S.; Chida, Y.; Doita, M. Analysis of characteristics required for gait evaluation of patients with knee osteoarthritis using a wireless accelerometer. Knee 2021, 32, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Atukorala, I.; Hunter, D.J. A review of quality-of-life in elderly osteoarthritis. Expert Rev. Pharmacoecon Outcomes Res. 2023, 23, 365–381. [Google Scholar] [CrossRef] [PubMed]
- Naili, J.E.; Iversen, M.D.; Esbjörnsson, A.C.; Hedström, M.; Schwartz, M.H.; Häger, C.K.; Broström, E.W. Deficits in functional performance and gait one year after total knee arthroplasty despite improved self-reported function. Knee Surg. Sports Traumatol. Arthrosc. 2016, 25, 3378. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rönn, K.; Reischl, N.; Gautier, E.; Jacobi, M. Current Surgical Treatment of Knee Osteoarthritis. Arthritis 2011, 2011, 454873. [Google Scholar] [CrossRef]
- Skou, S.T.; Roos, E.M.; Laursen, M.B.; Rathleff, M.; Arendt-Nielsen, L.; Rasmussen, S.; Simonsen, O. Total knee replacement and nonsurgical treatment of knee osteoarthritis: 2-year outcome from two parallel randomized controlled trials. Osteoarthr. Cartil. 2018, 26, 1170–1180. [Google Scholar] [CrossRef]
- Peat, G.; Thomas, M.J. Osteoarthritis year in review 2020: Epidemiology & therapy. Osteoarthr. Cartil. 2021, 29, 180–189. [Google Scholar] [CrossRef]
- Scheuing, W.J.; Reginato, A.M.; Deeb, M.; Acer Kasman, S. The burden of osteoarthritis: Is it a rising problem? Best Pract. Res. Clin. Rheumatol. 2023, 37, 101836. [Google Scholar] [CrossRef]
- Boekesteijn, R.J.; van Gerven, J.; Geurts, A.C.H.; Smulders, K. Objective gait assessment in individuals with knee osteoarthritis using inertial sensors: A systematic review and meta-analysis. Gait Posture 2022, 98, 109–120. [Google Scholar] [CrossRef]
- Pollet, J.; Buraschi, R. Gait Alterations in Knee Osteoarthritis A Narrative Review on Gait Analysis Studies. Top. Geriatr. Rehabil. 2021, 37, 239–243. [Google Scholar] [CrossRef]
- Zeng, Z.; Shan, J.; Zhang, Y.; Wang, Y.; Li, C.; Li, J.; Chen, W.; Ye, Z.; Ye, X.; Chen, Z.; et al. Asymmetries and relationships between muscle strength, proprioception, biomechanics, and postural stability in patients with unilateral knee osteoarthritis. Front. Bioeng. Biotechnol. 2022, 10, 922832. [Google Scholar] [CrossRef]
- Favre, J.; Jolles, B.M. Gait analysis of patients with knee osteoarthritis highlights a pathological mechanical pathway and provides a basis for therapeutic interventions. EFORT Open Rev. 2016, 1, 368–374. Available online: https://eor.bioscientifica.com/view/journals/eor/1/10/2058-5241.1.000051.xml (accessed on 20 February 2025). [CrossRef] [PubMed]
- Abbasi-Bafghi, H.; Fallah-Yakhdani, H.R.; Meijer, O.G.; de Vet, H.C.; Bruijn, S.M.; Yang, L.-Y.; Knol, D.L.; Van Royen, B.J.; van Dieën, J.H. The effects of knee arthroplasty on walking speed: A meta-analysis. BMC Musculoskelet. Disord. 2012, 13, 66. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kleiner, A.F.R.; Pacifici, I.; Vagnini, A.; Camerota, F.; Celletti, C.; Stocchi, F.; De Pandis, M.F.; Galli, M. Timed Up and Go evaluation with wearable devices: Validation in Parkinson’s disease. J. Bodyw. Mov. Ther. 2018, 22, 390–395. [Google Scholar] [CrossRef] [PubMed]
- De Ridder, R.; Lebleu, J.; Willems, T.; De Blaiser, C.; Detrembleur, C.; Roosen, P. Concurrent validity of a commercial wireless trunk triaxial accelerometer system for gait analysis. J. Sport. Rehabil. 2019, 28. [Google Scholar] [CrossRef]
- Spina, S.; Facciorusso, S.; D’ascanio, M.C.; Morone, G.; Baricich, A.; Fiore, P.; Santamato, A. Sensor based assessment of turning during instrumented Timed Up and Go Test for quantifying mobility in chronic stroke patients. Eur. J. Phys. Rehabil. Med. 2023, 59, 6–13. [Google Scholar] [CrossRef]
- Viteckova, S.; Horakova, H.; Polakova, K.; Krupicka, R.; Ruzicka, E.; Brozova, H. Agreement between the GAITRite R System and the Wearable Sensor BTS G-Walk R for measurement of gait parameters in healthy adults and Parkinson’s disease patients. PeerJ. 2020, 8, e8835. [Google Scholar] [CrossRef]
- Volkan-Yazici, M.; Çobanoğlu, G.; Yazici, G. Test-retest reliability and minimal detectable change for measures of wearable gait analysis system (G-Walk) in children with cerebral palsy. Turk. J. Med. Sci. 2022, 52, 658–666. [Google Scholar] [CrossRef]
- Porciuncula, F.; Roto, A.V.; Kumar, D.; Davis, I.; Roy, S.; Walsh, C.J.; Awad, L.N. Wearable Movement Sensors for Rehabilitation: A Focused Review of Technological and Clinical Advances. PMR 2018, 10, S220–S232. [Google Scholar] [CrossRef]
- Prasanth, H.; Caban, M.; Keller, U.; Courtine, G.; Ijspeert, A.; Vallery, H.; von Zitzewitz, J. Wearable sensor-based real-time gait detection: A systematic review. Sensors 2021, 21, 2727. [Google Scholar] [CrossRef]
- Burnett, D.R.; Campbell-Kyureghyan, N.H.; Topp, R.V.; Quesada, P.M. Biomechanics of Lower Limbs during Walking among Candidates for Total Knee Arthroplasty with and without Low Back Pain. Biomed. Res. Int. 2015, 2015, 142562. [Google Scholar] [CrossRef] [PubMed]
- Chughtai, M.; Shah, N.V.; Sultan, A.A.; Solow, M.; Tiberi, J.V.; Mehran, N.; North, T.; Moskal, J.T.; Newman, J.M.; Samuel, L.T.; et al. The role of prehabilitation with a telerehabilitation system prior to total knee arthroplasty. Ann. Transl. Med. 2019, 7, 68. [Google Scholar] [CrossRef] [PubMed]
- Azaman, A.; Qahtani, I.A.M.; Puspanathan, J.; Zulkapri, I.; Soeed, K. Simulation of Lower Limb Muscle Moment and Total Muscle Fiber Force Using OpenSim for Knee Osteoarthritis. J. Med. Device Technol. 2023, 2, 38–42. [Google Scholar] [CrossRef]
- Rana, P.; Joshi, S.; Bodwal, M. Quantitative Gait Analysis in Patients With Knee Osteoarthritis. Int. J. Physiother. Res. 2016, 4, 1684–1688. [Google Scholar] [CrossRef]
- Akimoto, T.; Kawamura, K.; Wada, T.; Ishihara, N.; Yokota, A.; Suginoshita, T.; Yokoyama, S. Gait cycle time variability in patients with knee osteoarthritis and its possible associated factors. J. Phys. Ther. Sci. 2022, 34, 140–145. [Google Scholar] [CrossRef]
- Franz, A.; Ji, S.; Bittersohl, B.; Zilkens, C.; Behringer, M. Impact of a six-week prehabilitation with blood-flow restriction training on pre- and postoperative skeletal muscle mass and strength in patients receiving primary Total Knee Arthroplasty. Front. Physiol. 2022, 13, 881484. [Google Scholar] [CrossRef]
- McCarthy, I.; Hodgins, D.; Mor, A.; Elbaz, A.; Segal, G. Analysis of knee flexion characteristics and how they alter with the onset of knee osteoarthritis: A case control study. BMC Musculoskelet. Disord. 2013, 14, 169. [Google Scholar] [CrossRef]
- Simic, M.; Hinman, R.S.; Wrigley, T.V.; Bennell, K.L.; Hunt, M.A. Gait modification strategies for altering medial knee joint load: A systematic review. Arthritis Care Res. 2011, 63, 405–426. [Google Scholar] [CrossRef]
- Kline, P.W.; Jacobs, C.A.; Duncan, S.T.; Noehren, B. Rate of torque development is the primary contributor to quadriceps avoidance gait following total knee arthroplasty. Gait Posture 2019, 68, 397–402. [Google Scholar] [CrossRef]
- Rahman, J.; Tang, Q.; Monda, M.; Miles, J.; McCarthy, I. Gait assessment as a functional outcome measure in total knee arthroplasty: A cross-sectional study. BMC Musculoskelet. Disord. 2015, 16, 66. [Google Scholar] [CrossRef]
- Koseki, K.; Mutsuzaki, H.; Yoshikawa, K.; Endo, Y.; Kanazawa, A.; Nakazawa, R.; Fukaya, T.; Aoyama, T.; Kohno, Y. Gait Training Using a Hip-Wearable Robotic Exoskeleton After Total Knee Arthroplasty: A Case Report. Geriatr. Orthop. Surg. Rehabil. 2020, 11, 2151459320966483. [Google Scholar] [CrossRef]
- Su, W.; Zhou, Y.; Qiu, H.; Wu, H. The effects of preoperative rehabilitation on pain and functional outcome after total knee arthroplasty: A meta-analysis of randomized controlled trials. J. Orthop. Surg. Res. 2022, 17, 175. [Google Scholar] [CrossRef]
- Christiansen, C.L.; Bade, M.J.; Weitzenkamp, D.A.; Stevens-Lapsley, J.E. Factors predicting weight-bearing asymmetry 1 month after unilateral total knee arthroplasty: A cross-sectional study. Gait Posture 2013, 37, 363–367. [Google Scholar] [CrossRef]
- Baker, C.S.; McKeon, J.M. Does preoperative rehabilitation improve patient-based outcomes in persons who have undergone total knee arthroplasty? A systematic review. PMR 2012, 4, 756–767. [Google Scholar] [CrossRef]
Knee Osteoarthritis (n = 21) | Controls (n = 39) | p Value | |
---|---|---|---|
Age (years) | 73.57 ± 6.44 | 71.59 ± 4.81 | 0.229 |
Weight (kg) | 82.29 ± 16.92 | 77.96 ± 9.66 | 0.270 |
Height (cm) | 165.52 ± 7.23 | 163.81 ± 7.45 | 0.429 |
BMI | 30.01 ± 5.75 | 29.15 ± 3.97 | 0.541 |
Shoe size (EU) | 39.76 ± 2.26 | 39.81 ± 3.98 | 0.332 ᵃ |
Gender, Male/Female, N (%) | 3 (14.3)/18 (85.7) | 10 (25.6)/29 (74.4) | 0.704 |
Parameter | Knee Osteoarthritis | Controls | ||
---|---|---|---|---|
Mean ± SD | Mean ± SD | p Value | Effect Size (Cohen’s d) | |
Left gait cycle duration (s) | 1.36 ± 0.14 | 1.11 ± 0.06 | 0.000 | 2.17 |
Right gait cycle duration (s) | 1.35 ± 0.14 | 1.11 ± 0.07 | 0.000 | 2.17 |
Cadence (steps/min) | 91.12 ± 9.02 | 108.78 ± 6.64 | 0.000 | −2.23 |
Speed (m/s) | 0.87 ± 0.16 | 1.11 ± 0.14 | 0.000 | −1.60 |
Left stride duration (s) | 1.37 ± 0.16 | 1.11 ± 0.06 | 0.000 | 2.15 |
Right stride duration (s) | 1.36 ± 0.16 | 1.11 ± 0.07 | 0.000 | 2.02 |
Left stance duration (%) | 60.95 ± 5.16 | 60.80 ± 2.34 | 0.892 | 0.04 |
Right stance duration (%) | 60.66 ± 5.07 | 60.15 ± 2.90 | 0.663 | 0.12 |
Left stride length (m) | 1.18 ± 0.20 | 1.23 ± 0.15 | 0.274 | −0.28 |
Right stride length (m) | 1.18 ± 0.19 | 1.23 ± 0.15 | 0.277 | −0.29 |
First left double support (%) | 11.18 ± 2.02 | 10.26 ± 2.38 | 0.163 | 0.42 |
Left single support (%) | 39.14 ± 4.88 | 39.65 ± 2.67 | 0.646 | −0.13 |
Right single support (%) | 38.79 ± 5.22 | 39.10 ± 1.91 | 0.773 | −0.08 |
Right swing duration (%) | 39.34 ± 5.07 | 39.85 ± 2.90 | 0.663 | −0.12 |
Left propulsion index | 3.78 ± 1.47 | 6.45 ± 1.30 | 0.000 | −1.92 |
Right propulsion index | 4.01 ± 1.58 | 6.45 ± 1.42 | 0.000 | −1.62 |
Right walk quality index | 91.47 ± 5.30 | 94.91 ± 2.65 | 0.005 | −0.82 |
Median ± IQR | Median ± IQR | p value | Effect Size (r) | |
Left elaborated steps (s) | 11.0 ± 6.0 | 8.0 ± 2.0 | 0.000 | 0.66 |
Right elaborated steps (s) | 11.0 ± 5.0 | 8.0 ± 2.0 | 0.000 | 0.69 |
Symmetry index of gait cycle | 92.7 ± 14.85 | 97.0 ± 2.4 | 0.000 | 0.71 |
% Left stride length (% height) | 69.1 ± 18.25 | 75.9 ± 11.7 | 0.143 | 0.17 |
% Right stride length (% height) | 69.5 ± 17.65 | 75.4 ± 10.9 | 0.132 | 0.18 |
Left swing duration (%) | 39.3 ± 6.6 | 38.5 ± 3.2 | 0.893 | 0.01 |
First right double support (%) | 10.2 ± 3.1 | 11.8 ± 4.3 | 0.417 | 0.08 |
Left walk quality index | 93.5 ± 6.8 | 95.9 ± 4.3 | 0.036 | 0.21 |
Tilt—symmetry index of pelvic angles | 50.5 ± 49.1 | 74.2 ± 27.4 | 0.014 | 0.28 |
Obliquity—symmetry index of pelvic angles | 90.3 ± 9.8 | 98.7 ± 0.8 | 0.000 | 0.52 |
Rotation—symmetry index of pelvic angles | 94.8 ± 4.1 | 98.1 ± 2.4 | 0.002 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gianzina, E.; Yiannakopoulos, C.K.; Armenis, E.; Chronopoulos, E. Wearable Sensor Assessment of Gait Characteristics in Individuals Awaiting Total Knee Arthroplasty: A Cross-Sectional, Observational Study. J. Funct. Morphol. Kinesiol. 2025, 10, 288. https://doi.org/10.3390/jfmk10030288
Gianzina E, Yiannakopoulos CK, Armenis E, Chronopoulos E. Wearable Sensor Assessment of Gait Characteristics in Individuals Awaiting Total Knee Arthroplasty: A Cross-Sectional, Observational Study. Journal of Functional Morphology and Kinesiology. 2025; 10(3):288. https://doi.org/10.3390/jfmk10030288
Chicago/Turabian StyleGianzina, Elina, Christos K. Yiannakopoulos, Elias Armenis, and Efstathios Chronopoulos. 2025. "Wearable Sensor Assessment of Gait Characteristics in Individuals Awaiting Total Knee Arthroplasty: A Cross-Sectional, Observational Study" Journal of Functional Morphology and Kinesiology 10, no. 3: 288. https://doi.org/10.3390/jfmk10030288
APA StyleGianzina, E., Yiannakopoulos, C. K., Armenis, E., & Chronopoulos, E. (2025). Wearable Sensor Assessment of Gait Characteristics in Individuals Awaiting Total Knee Arthroplasty: A Cross-Sectional, Observational Study. Journal of Functional Morphology and Kinesiology, 10(3), 288. https://doi.org/10.3390/jfmk10030288