The Effect of Peak Height Velocity on Strength and Power Development of Young Athletes: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Eligibility Criteria
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Data Extraction
- -
- Duplicate Removal: All identified records were imported into Mendeley for deduplication.
- -
- Title and Abstract Screening: Titles and abstracts were reviewed to identify studies that generally met the inclusion criteria.
- -
- Full-Text Review: Shortlisted studies were examined in detail to determine their relevance based on specific criteria.
3. Results
3.1. Improvements in Strength and Jump Performance Across Sports
3.2. Maturation Timing and Performance Spurts
3.3. Training Volume and Frequency as Key Performance Improvement Parameters
3.4. Longitudinal Trajectories and Developmental Trends
Type of Study | Author | Year | Study Duration | Sport | Ethnicity | Chronological Age | Baseline Biological Age | Participants | Assessment(s) | Testing Occasions | Results | Training Frequency/volume |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Longitudinal Study | Birat et al. [21] | 2024 | 9 Months | Triathlon | France | (years) 14.0 ± 0.6 (CON)/13.9 ± 0.6 (END) | MO (years) −0.1 ± 0.7 (CON)/−0.1 ± 0.9 (END) | 38 Males (23 Triathletes (END)/15 Archery (CON)) | KE MVCiso/KF MVCiso/KE MVCcon/KF MVCecc | 2 | KE MVCiso Torque ↑/KE MVCcon Torque ↑/RF pennation angle ↑/RF muscle thickness ↑ | At least 1 Swimming, 1 Cycling, 1 Running Session per Week (END)/<2 h (CON) |
Mixed-Longitudinal Study | Ramos et al. [53]. | 2021 | 3 years | Basketball | Portugal | 13.8 ± 0.4 U14/15.7 ± 0.4 U16 | MO (years) 0.54 ± 0.7 U14/2.04 ± 0.6 U16 | 281 Males | CMJ/CMJ with Arm Swing/MBT/HGS | 3 | ↑ in all variables | 6.1 ± 1.6 h per Week (U14)/6.8 ± 2.5 h per Week (U16) |
Mixed-Longitudinal Study | Guimaraes et al. [23]. | 2021 | 3 years | Basketball | Portugal | 11–15 | 18 Months Before PHV/18 Months After PHV | 160 Males | Sit-Ups/HGS/MBT/SJ/CMJ | 6 | Maximal Velocity: Sit-Ups 6 months before PHV/HGS, during PHV/MBT, during PHV/SJ 6 months after PHV/CMJ during PHV | 4.5 to 6.0 h per Week |
Mixed-Longitudinal Design | De Ste Croix et al. [54] | 2021 | 3 years | Soccer and Basketball | United Kingdom | 13.2 ± 0.5 U14/15.1 ± 0.6 U16 | MO (years) −0.02 ± 0.68 U14/1.69 ± 0.71 U16 | 44 Males | 5 maximum hop test | 3 | Reactive Strength Index ↑ | 5–7 Sessions per Week (6 to 12 h per Week) and 1 Match per Week (Soccer) or 2 Matches every two Weeks (Basketball) |
Case Study-Longitudinal | Moran et al. [56] | 2020 | 6 years | Soccer | United Kingdom | 9.9 ± 0.4 | MO (years) -3,1 | 6 Males | CMJ | 18 | Pre-Post CMJ ↑ | Not Mentioned |
Longitudinal Study | Sekine et al. [52] | 2019 | 1 year | Basketball | Japan | 13.1 ± 0.5 Late/12.8 ± 0.4 Mid/13.3 ± 0.6 Early | Estimated Age at PHV (years) (14.2 ± 0.6) Late/12.7 ± 0.4) Mid/11.9 ± 0.8) Early | 41 Males | Abalakov jumps | 2 | Pre-Post ↑ | 12.5 to 14 h per Week/4.5 to 5 h S&C (Bodyweight Exercises, Sprint Training, Resistance Training, Stability Exercises)/8 to 9 h Sport-Specific Practice/1 to 2 Games Per Week |
Mixed-Longitudinal Study | Bidaurrazaga-Letona et al. [49]. | 2019 | 10 Months | Soccer | Spain | 12.3 ± 0.3 U13/14.0 ± 0.2 U15 | MO (years) −3.12 ± 0.32, −3.18 ± 0.35 U13/−1.88 ± 0.45, −1.62 ± 0.80 U15 | 94 Males | CMJ with Arm Swing | 2 | Pre-Post ↑ | 3 Sessions per Week (1–1.5 h training per day)/1 Match per Week |
Longitudinal Study | Morris et al. [50] | 2018 | 9 Months | Soccer | United Kingdom | Elite 12.48 ± 0.7 Pre-PHV/14.24 ± 0.85 Circa-PHV/15.71 ± 1.16 Post-PHV/CON 11.57 ± 0.4 Pre-PHV/14.28 ± 1.29 Circa-PHV/15.83 ± 1.11 Post-PHV | MO/Elite −1.95 ± 0.63 Pre-PHV/−0.09 ± 0.64 Circa-PHV/1.52 ± 0.92 Post-PHV/CON −2.21 ± 0.62 Pre-PHV/0.17 ± 0.49 Circa PHV/2.13 ± 0.62 Post-PHV | 150 (112 Soccer/38 Non-Elite Active) | IMTP/CMJ | 2 | CMJ ↑ among elite and control groups/Peak Force ↑ and Relative peak force ↑ in IMTP | 4 Sessions and 1 to 2 S&C Sessions per Week (Pre, Circa-PHV)/6 Sessions and 2 to 3 S&C per Week (Post-PHV) |
Mixed-Cross Sectional-Longitudinal Study | Till & Jones [55] | 2015 | 5 years | Rugby | United Kingdom | 12.8–15.5 | MO (years) −2.5 to 2.5 | 121 Males | CMJ/MBT | 1–4 | VJ ↑ −2.5 and −1.5 and 0.5 and 1.5 Years from PHV/MBT | Not Mentioned |
Longitudinal Study | Philippaerts et al. [5] | 2006 | 5 years | Soccer | Belgium | 10.4–13.7 | MO (months) −24 to 24 | 33 Males | Sit Ups/BAH/SLJ/VJ | 5 | Maximal Velocity: Trunk Strength, during PHV/BAH, during PHV/SLJ, 18 months before PHV/VJ, during PHV | 6 h Combined Competitive Play and Soccer Training per week (4 to 5 sessions) (Elite)/4 h (3 sessions per week) (Sub-Elite)/3 h (2 sessions per Week) per week (Non-Elite) |
Longitudinal Study | Paschaleri et al. [57] | 2024 | 18 Months | Track and Field | Greece | 12.5 ± 0.29 Boys/10.5 ± 0.32 Girls | MO (months) −18 | 38 (20 Males/18 Females) | CMJ/EMG Medialis Gastrocnemius and Tibialis Anterior/Achilles Tendon Stiffness | 3 | Pre-Post: CMJ ↔/Tendon Stiffness ↑/Changes in EMG variables | Not Mentioned |
Longitudinal Study | Radnor et al. [58] | 2022 | 18 Months | Students (Rugby, Soccer) | United Kingdom | 12.4 ± 0.2 Pre-PHV/13 ± 0.6 Pre-Post/14.3 ± 0.4 Post-Post | MO (years) −1.7 ± 0.3 Pre-PHV/−0.6 ± 0.4 0.7 ± 0.5 Pre-Post/0.8 ± 0.6 Post-Post | 38 Males | CMJ | 2 | Larger changes: Post-PHV | Not Mentioned |
4. Discussion
4.1. Limitations
4.2. Practical Implications
4.3. Gaps and Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faigenbaum, A.; Myer, G. Resistance Training among Young Athletes: Safety, Efficacy and Injury Prevention Effects. Br. J. Sports Med. 2009, 44, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Rogol, A.D.; Cumming, S.P.; Coelho e Silva, M.J.; Figueiredo, A.J. Biological Maturation of Youth Athletes: Assessment and Implications. Br. J. Sports Med. 2015, 49, 852–859. [Google Scholar] [CrossRef]
- Malina, R.M.; Claessens, A.L.; Van Aken, K.; Thomis, M.; Lefevre, J.; Philippaerts, R.; Beunen, G.P. Maturity Offset in Gymnasts. Med. Sci. Sports Exerc. 2006, 38, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An Assessment of Maturity from Anthropometric Measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Philippaerts, R.; Vaeyens, R.; Janssens, M.; Renterghem, B.; Matthys, D.; Craen, R.; Bourgois, J.; Vrijens, J.; Beunen, G.; Malina, R. The Relationship between Peak Height Velocity and Physical Performance in Youth Soccer Players. J. Sports Sci. 2006, 24, 221–230. [Google Scholar] [CrossRef]
- Malina, R.M.; Coelho E Silva, M.J.; Figueiredo, A.J.; Carling, C.; Beunen, G.P. Interrelationships among Invasive and Non-Invasive Indicators of Biological Maturation in Adolescent Male Soccer Players. J. Sports Sci. 2012, 30, 1705–1717. [Google Scholar] [CrossRef]
- Lima, A.B.; Quinaud, R.T.; Karasiak, F.C.; Galvão, L.G.; Gonçalves, C.E.; Carvalho, H.M. Longitudinal Meta-Analysis of Peak Height Velocity in Young Female Athletes. Cureus 2024, 16, e59482. [Google Scholar] [CrossRef]
- Malina, R.M.; Kozieł, S.M. Validation of Maturity Offset in a Longitudinal Sample of Polish Boys. J. Sports Sci. 2014, 32, 424–437. [Google Scholar] [CrossRef]
- Beunen, G.; Malina, R.M. Growth and Physical Performance Relative to the Timing of the Adolescent Spurt. Exerc. Sport. Sci. Rev. 1988, 16, 503–540. [Google Scholar] [CrossRef]
- Tanner, J.M.; Whitehouse, R.H.; Takaishi, M. Standards from Birth to Maturity for Height, Weight, Height Velocity, and Weight Velocity: British Children, 1965. II. Arch. Dis. Child. 1966, 41, 613–635. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; Lloyd, R.S.; Oliver, J.L. Essentials of Youth Fitness, 1st ed.; Human Kinetics: Champaing, IL, USA, 2019. [Google Scholar]
- Armstrong, N.; van Mechelen, W. Oxford Textbook of Children’s Sport and Exercise Medicine, 4th ed.; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Arede, J.; Fernandes, J.F.T.; Schöllhorn, W.I.; Leite, N. Differential Repeated Sprinting Training in Youth Basketball Players: An Analysis of Effects According to Maturity Status. Int. J. Environ. Res. Public Health 2022, 19, 12265. [Google Scholar] [CrossRef]
- Fernandez-Fernandez, J.; Canós-Portalés, J.; Martínez-Gallego, R.; Corbi, F.; Baiget, E. Effects of Different Maturity Status on Change of Direction Performance of Youth Tennis Players. Biol. Sport. 2023, 40, 867–876. [Google Scholar] [CrossRef] [PubMed]
- John, C.; Rahlf, A.L.; Hamacher, D.; Zech, A. Influence of Biological Maturity on Static and Dynamic Postural Control among Male Youth Soccer Players. Gait Posture 2019, 68, 18–22. [Google Scholar] [CrossRef]
- Clarke, L.M.; Jones, R.M.; Hiremath, S.V.; Franklin, C.; Wright, W.G.; Tucker, C.A. The Effects of Age and Height on Gait Smoothness in Adolescent Athletes. Children 2024, 11, 223. [Google Scholar] [CrossRef]
- Retzepis, N.-O.; Avloniti, A.; Kokkotis, C.; Protopapa, M.; Stampoulis, T.; Gkachtsou, A.; Pantazis, D.; Balampanos, D.; Smilios, I.; Chatzinikolaou, A. Identifying Key Factors for Predicting the Age at Peak Height Velocity in Preadolescent Team Sports Athletes Using Explainable Machine Learning. Sports 2024, 12, 287. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Oliver, J.L.; Faigenbaum, A.D.; Myer, G.D.; De Ste Croix, M. Chronological Age vs. Biological Maturation: Implications for Exercise Programming in Youth. J. Strength Cond. Res. 2014, 28, 1454–1464. [Google Scholar] [CrossRef]
- Bailey, D. The Saskatchewan Pediatric Bone Mineral Accrual Study: Bone Mineral Acquisition During the Growing Years. Int. J. Sports Med. 1997, 18, S191–S194. [Google Scholar] [CrossRef] [PubMed]
- Takei, S.; Torii, S.; Taketomi, S.; Iizuka, S.; Tojima, M.; Iwanuma, S.; Iida, Y.; Tanaka, S. Developmental Stage and Lower Quadriceps Flexibilities and Decreased Gastrocnemius Flexibilities Are Predictive Risk Factors for Developing Osgood–Schlatter Disease in Adolescent Male Soccer Players. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 3330–3338. [Google Scholar] [CrossRef]
- Birat, A.; Garnier, Y.M.; Dupuy, A.; Bontemps, B.; Dodu, A.; Grossoeuvre, C.; Dupont, A.; Rance, M.; Morel, C.; Blazevich, A.J.; et al. Neuromuscular Adaptations in Endurance-Trained Male Adolescents Versus Untrained Peers: A 9-Month Longitudinal Study. Scand. J. Med. Sci. Sports 2024, 34, e14681. [Google Scholar] [CrossRef]
- De Ste Croix, M. Advances in Paediatric Strength Assessment: Changing Our Perspective on Strength Development. J. Sports Sci. Med. 2007, 6, 292–304. [Google Scholar]
- Guimarães, E.; Maia, J.A.R.; Williams, M.; Sousa, F.; Santos, E.; Tavares, F.; Janeira, M.A.; Baxter-Jones, A.D.G. Muscular Strength Spurts in Adolescent Male Basketball Players: The INEX Study. Int. J. Environ. Res. Public Health 2021, 18, 776. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, H.M.; Coelho-e-Silva, M.; Valente-dos-Santos, J.; Gonçalves, R.S.; Philippaerts, R.; Malina, R. Scaling Lower-Limb Isokinetic Strength for Biological Maturation and Body Size in Adolescent Basketball Players. Eur. J. Appl. Physiol. 2012, 112, 2881–2889. [Google Scholar] [CrossRef]
- Meyers, R.W.; Oliver, J.L.; Hughes, M.G.; Lloyd, R.S.; Cronin, J.B. The Influence of Maturation on Sprint Performance in Boys over a 21-Month Period. Med. Sci. Sports Exerc. 2016, 48, 2555–2562. [Google Scholar] [CrossRef] [PubMed]
- Ford, P.; De Ste Croix, M.; Lloyd, R.; Meyers, R.; Moosavi, M.; Oliver, J.; Till, K.; Williams, C. The Long-Term Athlete Development Model: Physiological Evidence and Application. J. Sports Sci. 2011, 29, 389–402. [Google Scholar] [CrossRef]
- Mendez-Villanueva, A.; Buchheit, M.; Kuitunen, S.; Douglas, A.; Peltola, E.; Bourdon, P. Age-Related Differences in Acceleration, Maximum Running Speed, and Repeated-Sprint Performance in Young Soccer Players. J. Sports Sci. 2011, 29, 477–484. [Google Scholar] [CrossRef]
- Nimphius, S.; Mcguigan, M.R.; Newton, R.U. Relationship Between Strength, Power, Speed, and Change of Direction Performance of Female Softball Players. J. Strength Cond. Res. 2010, 24, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.B.; Hansen, K.T. Strength and Power Predictors of Sports Speed. J. Strength Cond. Res. 2005, 19, 349. [Google Scholar] [CrossRef]
- Malina, R.M.; Bouchard, C. Growth, Maturation, and Physical Activity; Human Kinetics Academic: Champaign, IL, USA, 1991; ISBN 0-87322-321-7. [Google Scholar]
- Lloyd, R.S.; Oliver, J.L. The Youth Physical Development Model. Strength Cond. J. 2012, 34, 61–72. [Google Scholar] [CrossRef]
- Cumming, S.P.; Lloyd, R.S.; Oliver, J.L.; Eisenmann, J.C.; Malina, R.M. Bio-Banding in Sport: Applications to Competition, Talent Identification, and Strength and Conditioning of Youth Athletes. Strength Cond. J. 2017, 39, 34–47. [Google Scholar] [CrossRef]
- van der Sluis, A.; Elferink-Gemser, M.; Coelho-e-Silva, M.; Nijboer, J.; Brink, M.; Visscher, C. Sport Injuries Aligned to Peak Height Velocity in Talented Pubertal Soccer Players. Int. J. Sports Med. 2013, 35, 351–355. [Google Scholar] [CrossRef]
- Gerodimos, V. Reliability of Handgrip Strength Test in Basketball Players. J. Hum. Kinet. 2012, 31, 25–36. [Google Scholar] [CrossRef]
- Gerodimos, V.; Karatrantou, K.; Dipla, K.; Zafeiridis, A.; Tsiakaras, N.; Sotiriadis, S. Age-Related Differences in Peak Handgrip Strength Between Wrestlers and Nonathletes During the Developmental Years. J. Strength Cond. Res. 2013, 27, 616–623. [Google Scholar] [CrossRef]
- De Ste Croix, M.; Armstrong, N.; Welsman, J.R.; Sharpe, P. Longitudinal Changes in Isokinetic Leg Strength in 10-14-Year-Olds. Ann. Hum. Biol. 2002, 29, 50–62. [Google Scholar] [CrossRef]
- Catley, M.J.; Tomkinson, G.R. Normative Health-Related Fitness Values for Children: Analysis of 85347 Test Results on 9–17-Year-Old Australians since 1985. Br. J. Sports Med. 2013, 47, 98. [Google Scholar] [CrossRef]
- Sander, A.; Keiner, M.; Wirth, K.; Schmidtbleicher, D. Influence of a 2-year Strength Training Programme on Power Performance in Elite Youth Soccer Players. Eur. J. Sport. Sci. 2013, 13, 445–451. [Google Scholar] [CrossRef]
- Keiner, M.; Sander, A.; Wirth, K.; Schmidtbleicher, D. Long-Term Strength Training Effects on Change-of-Direction Sprint Performance. J. Strength Cond. Res. 2014, 28, 223–231. [Google Scholar] [CrossRef]
- Chen, L.; Yan, R.; Xie, L.; Zhang, Z.; Zhang, W.; Wang, H. Maturation-Specific Enhancements in Lower Extremity Explosive Strength Following Plyometric Training in Adolescent Soccer Players: A Systematic Review and Meta-Analysis. Heliyon 2024, 10, e33063. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Sortwell, A.; Moran, J.; Afonso, J.; Clemente, F.M.; Lloyd, R.S.; Oliver, J.L.; Pedley, J.; Granacher, U. Plyometric-Jump Training Effects on Physical Fitness and Sport-Specific Performance According to Maturity: A Systematic Review with Meta-Analysis. Sports Med. Open 2023, 9, 23. [Google Scholar] [CrossRef]
- Peitz, M.; Behringer, M.; Granacher, U. Correction: A Systematic Review on the Effects of Resistance and Plyometric Training on Physical Fitness in Youth- What Do Comparative Studies Tell Us? PLoS ONE 2018, 13, e0207641. [Google Scholar] [CrossRef]
- Blimkie, C.J. Resistance Training During Preadolescence. Sports Med. 1993, 15, 389–407. [Google Scholar] [CrossRef]
- Peltonen, J.E.; Taimela, S.; Erkintalo, M.; Salminen, J.J.; Oksanen, A.; Kujala, U.M. Back Extensor and Psoas Muscle Cross-Sectional Area, Prior Physical Training, and Trunk Muscle Strength ? A Longitudinal Study in Adolescent Girls. Eur. J. Appl. Physiol. 1997, 77, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Mandroukas, A.; Metaxas, T.I.; Michailidis, Y.; Christoulas, K.; Heller, J. Effects of Soccer Training in Muscular Strength: A Comparative Study in Trained Youth Soccer Players and Untrained Boys of the Same Biological Age. J. Sports Med. Phys. Fitness 2021, 61, 1469–1477. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L.; Hughes, M.G.; Williams, C.A. The Influence of Chronological Age on Periods of Accelerated Adaptation of Stretch-Shortening Cycle Performance in Pre and Postpubescent Boys. J. Strength Cond. Res. 2011, 25, 1889–1897. [Google Scholar] [CrossRef]
- Peters, M.D.J.; Marnie, C.; Tricco, A.C.; Pollock, D.; Munn, Z.; Alexander, L.; McInerney, P.; Godfrey, C.M.; Khalil, H. Updated Methodological Guidance for the Conduct of Scoping Reviews. JBI Evid. Synth. 2020, 18, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Bidaurrazaga-Letona, I.; Lekue, J.A.; Amado, M.; Gil, S.M. Progression in Youth Soccer: Selection and Identification in Youth Soccer Players Aged 13–15 Years. J. Strength Cond. Res. 2019, 33, 2548–2558. [Google Scholar] [CrossRef]
- Morris, R.; Emmonds, S.; Jones, B.; Myers, T.D.; Clarke, N.D.; Lake, J.; Ellis, M.; Singleton, D.; Roe, G.; Till, K. Seasonal Changes in Physical Qualities of Elite Youth Soccer Players According to Maturity Status: Comparisons with Aged Matched Controls. Sci. Med. Footb. 2018, 2, 272–280. [Google Scholar] [CrossRef]
- Guevara-Araya, A.; Curripan-Henríquez, S.; Aguilera-Julio, J.; Antinao-Soto, A.; Araneda, O.F. Chilean National Sports Talent Detection System: Influence of Biological Age, Sex, and Geographic Area. J. Funct. Morphol. Kinesiol. 2024, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Sekine, Y.; Hoshikawa, S.; Hirose, N. Longitudinal Age-Related Morphological and Physiological Changes in Adolescent Male Basketball Players. J. Sports Sci. Med. 2019, 18, 751–757. [Google Scholar]
- Ramos, S.A.; Massuça, L.M.; Volossovitch, A.; Ferreira, A.P.; Fragoso, I. Morphological and Fitness Attributes of Young Male Portuguese Basketball Players: Normative Values According to Chronological Age and Years From Peak Height Velocity. Front. Sports Act. Living 2021, 3, 629453. [Google Scholar] [CrossRef]
- De Ste Croix, M.; Lehnert, M.; Maixnerova, E.; Ayala, F.; Psotta, R. The Influence of Age and Maturation on Trajectories of Stretch-Shortening Cycle Capability in Male Youth Team Sports. Pediatr. Exerc. Sci. 2021, 33, 16–22. [Google Scholar] [CrossRef]
- Till, K.; Jones, B. Monitoring Anthropometry and Fitness Using Maturity Groups Within Youth Rugby League. J. Strength Cond. Res. 2015, 29, 730–736. [Google Scholar] [CrossRef]
- Moran, J.; Paxton, K.; Jones, B.; Granacher, U.; Sandercock, G.R.; Hope, E.; Ramirez-Campillo, R. Variable Long-Term Developmental Trajectories of Short Sprint Speed and Jumping Height in English Premier League Academy Soccer Players: An Applied Case Study. J. Sports Sci. 2020, 38, 2525–2531. [Google Scholar] [CrossRef]
- Paschaleri, Z.; Chalatzoglidis, G.; Kannas, T.; Arabatzi, F. Effects of Maturation on Plantar Flexor Activity and Achilles Tendon Stiffness in Vertical Jumping: Sex Differences. Sports 2024, 12, 284. [Google Scholar] [CrossRef]
- Radnor, J.M.; Oliver, J.L.; Waugh, C.M.; Myer, G.D.; Lloyd, R.S. Muscle Architecture and Maturation Influence Sprint and Jump Ability in Young Boys: A Multistudy Approach. J. Strength Cond. Res. 2022, 36, 2741–2751. [Google Scholar] [CrossRef]
- Falk, B.; Tenenbaum, G. The Effectiveness of Resistance Training in Children. Sports Med. 1996, 22, 176–186. [Google Scholar] [CrossRef]
- Christou, M.; Smilios, I.; Sotiropoulos, K.; Volaklis, K.; Pilianidis, T.; Tokmakidis, S.P. Effects of Resistance Training on the Physical Capacities of Adolescent Soccer Players. J. Strength Cond. Res. 2006, 20, 783. [Google Scholar] [CrossRef]
- Cossor, J.M.; Blanksby, B.A.; Elliott, B.C. The Influence of Plyometric Training on the Freestyle Tumble Turn. J. Sci. Med. Sport. 1999, 2, 106–116. [Google Scholar] [CrossRef]
- Faigenbaum, A. The Effects of a Twice a Week Strength Training Program on Children. Pediatr. Exerc. Sci. 1993, 5, 339–346. [Google Scholar] [CrossRef]
- Tsolakis, C.; Vagenas, G.; Dessypris, A. Growth and Anabolic Hormones, Leptin, and Neuromuscular Performance in Moderately Trained Prepubescent Athletes and Untrained Boys. J. Strength Cond. Res. 2003, 17, 40. [Google Scholar] [CrossRef]
- Baquet, G.; Twisk, J.W.R.; Kemper, H.C.G.; Van Praagh, E.; Berthoin, S. Longitudinal Follow-up of Fitness during Childhood: Interaction with Physical Activity. Am. J. Hum. Biol. 2006, 18, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Honorato, R.d.C.; Franchini, E.; Lara, J.P.R.; Fonteles, A.I.; Pinto, J.C.B.d.L.; Mortatti, A.L. Differences in Handgrip Strength-Endurance and Muscle Activation Between Young Male Judo Athletes and Untrained Individuals. Res. Q. Exerc. Sport. 2021, 92, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rudroff, T.; Kelsey, M.M.; Melanson, E.L.; McQueen, M.B.; Enoka, R.M. Associations between Neuromuscular Function and Levels of Physical Activity Differ for Boys and Girls during Puberty. J. Pediatr. 2013, 163, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Viru, A.; Loko, J.; Harro, M.; Volver, A.; Laaneots, L.; Viru, M. Critical Periods in the Development of Performance Capacity During Childhood and Adolescence. Eur. J. Phys. Educ. 1999, 4, 75–119. [Google Scholar] [CrossRef]
- Guimarães, E.; Ramos, A.; Janeira, M.A.; Baxter-Jones, A.D.G.; Maia, J. How Does Biological Maturation and Training Experience Impact the Physical and Technical Performance of 11–14-Year-Old Male Basketball Players? Sports 2019, 7, 243. [Google Scholar] [CrossRef]
- Quatman, C.E.; Ford, K.R.; Myer, G.D.; Hewett, T.E. Maturation Leads to Gender Differences in Landing Force and Vertical Jump Performance. Am. J. Sports Med. 2006, 34, 806–813. [Google Scholar] [CrossRef]
- Costigan, S.; Gråstén, A.; Huhtiniemi, M.; Kolunsarka, I.; Stodden, D.; Jaakkola, T. Developmental Patterns of Objectively Measured Motor Competence and Musculoskeletal Fitness among Finnish Adolescents. Med. Sci. Sports Exerc. 2025, 57, 572–578. [Google Scholar] [CrossRef]
- Guimarães, E.; Baxter-Jones, A.D.G.; Pereira, S.; Garbeloto, F.; Freitas, D.; Janeira, M.A.; Tani, G.; Katzmarzyk, P.T.; Silva, S.; Bailey, D.A.; et al. Patterns of Physical Performance Spurts during Adolescence: A Cross-Cultural Study of Canadian, Brazilian and Portuguese Boys. Ann. Hum. Biol. 2020, 47, 346–354. [Google Scholar] [CrossRef]
- Gilliam, T.B.; Villanacci, J.F.; Freedson, P.S.; Sady, S.P. Isokinetic Torque in Boys and Girls Ages 7 to 13: Effect of Age, Height, and Weight. Res. Q. Am. Alliance Health Phys. Educ. Recreat. 1979, 50, 599–609. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Retzepis, N.-O.; Avloniti, A.; Kokkotis, C.; Stampoulis, T.; Balampanos, D.; Gkachtsou, A.; Aggelakis, P.; Kelaraki, D.; Protopapa, M.; Pantazis, D.; et al. The Effect of Peak Height Velocity on Strength and Power Development of Young Athletes: A Scoping Review. J. Funct. Morphol. Kinesiol. 2025, 10, 168. https://doi.org/10.3390/jfmk10020168
Retzepis N-O, Avloniti A, Kokkotis C, Stampoulis T, Balampanos D, Gkachtsou A, Aggelakis P, Kelaraki D, Protopapa M, Pantazis D, et al. The Effect of Peak Height Velocity on Strength and Power Development of Young Athletes: A Scoping Review. Journal of Functional Morphology and Kinesiology. 2025; 10(2):168. https://doi.org/10.3390/jfmk10020168
Chicago/Turabian StyleRetzepis, Nikolaos-Orestis, Alexandra Avloniti, Christos Kokkotis, Theodoros Stampoulis, Dimitrios Balampanos, Anastasia Gkachtsou, Panagiotis Aggelakis, Danai Kelaraki, Maria Protopapa, Dimitrios Pantazis, and et al. 2025. "The Effect of Peak Height Velocity on Strength and Power Development of Young Athletes: A Scoping Review" Journal of Functional Morphology and Kinesiology 10, no. 2: 168. https://doi.org/10.3390/jfmk10020168
APA StyleRetzepis, N.-O., Avloniti, A., Kokkotis, C., Stampoulis, T., Balampanos, D., Gkachtsou, A., Aggelakis, P., Kelaraki, D., Protopapa, M., Pantazis, D., Emmanouilidou, M., Zaras, N., Draganidis, D., Smilios, I., Kambas, A., Fatouros, I. G., Michalopoulou, M., & Chatzinikolaou, A. (2025). The Effect of Peak Height Velocity on Strength and Power Development of Young Athletes: A Scoping Review. Journal of Functional Morphology and Kinesiology, 10(2), 168. https://doi.org/10.3390/jfmk10020168