The Predictive Capacity of the 3-Meter Backward Walk Test for Falls in Older Adults: A Case–Control Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Assessment and Outcomes
2.4. Sample Size
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Correlation of 3m-BWT with Functional Variables
3.3. Discriminative Capacity of Functional Tests
3.4. Sensitivity and Specificity of Various Cut-Off Points
4. Discussion
4.1. Main Findings
4.2. Clinical Implications
4.3. Limitations, Recommendations, and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3m-BWT | 3-Meter Backward Walk Test |
4SST | 4-Square Step Test |
5STS | 5 Times Sit-to-Stand Test |
ASM | Appendicular Skeletal Muscle Mass |
AUC | Area Under the Curve |
BMI | Body Mass Index |
GRP | Geriatric Revitalization Program |
GS | Gait Speed |
HG | Hand Grip Strength |
ROC | Receiver Operating Characteristic |
SMI | Skeletal Muscle Mass Index |
SPPB | Short Physical Performance Battery |
TUG | Timed Up and Go Test |
References
- da Costa, J.P.; Vitorino, R.; Silva, G.M.; Vogel, C.; Duarte, A.C.; Rocha-Santos, T. A synopsis on aging—Theories, mechanisms and future prospects. Ageing Res. Rev. 2016, 29, 90–112. [Google Scholar] [PubMed]
- Kennedy, B.K.; Berger, S.L.; Brunet, A.; Campisi, J.; Cuervo, A.M.; Epel, E.S.; Franceschi, C.; Lithgow, G.J.; Morimoto, R.I.; Pessin, J.E.; et al. Geroscience: Linking aging to chronic disease. Cell 2014, 159, 709–713. [Google Scholar] [PubMed]
- Fong, B.Y.F. Ageing and frailty. Hong Kong Med. J. 2022, 28, 344–346. [Google Scholar] [PubMed]
- Brivio, P.; Paladini, M.S.; Racagni, G.; Riva, M.A.; Calabrese, F.; Molteni, R. From healthy aging to frailty: In search of the underlying mechanisms. Curr. Med. Chem. 2019, 26, 3685–3701. [Google Scholar]
- Nascimento, C.M.; Ingles, M.; Salvador-Pascual, A.; Cominetti, M.R.; Gomez-Cabrera, M.C.; Viña, J. Sarcopenia, frailty and their prevention by exercise. Free Radic. Biol. Med. 2019, 132, 42–49. [Google Scholar]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar]
- Taguchi, C.K.; Menezes, P.d.L.; Melo, A.C.S.; de Santana, L.S.; Conceição, W.R.S.; de Souza, G.F.; Araújo, B.C.L.; da Silva, A.R. Frailty syndrome and risks for falling in the elderly community. CoDAS 2022, 34, e20210025. [Google Scholar]
- Yang, Z.-C.; Lin, H.; Jiang, G.-H.; Chu, Y.-H.; Gao, J.-H.; Tong, Z.-J.; Wang, Z.-H. Frailty is a risk factor for falls in the older adults: A systematic review and meta-analysis. J. Nutr. Health Aging 2023, 27, 487–495. [Google Scholar]
- Bergen, G.; Stevens, M.R.; Burns, E.R. Falls and fall injuries among adults aged ≥65 years—United States, 2014. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 993–998. [Google Scholar]
- Morrison, A.; Fan, T.; Sen, S.S.; Weisenfluh, L. Epidemiology of falls and osteoporotic fractures: A systematic review. Clinicoecon. Outcomes Res. 2013, 5, 9–18. [Google Scholar]
- Vieira, E.R.; Palmer, R.C.; Chaves, P.H.M. Prevention of falls in older people living in the community. BMJ 2016, 353, i1419. [Google Scholar] [PubMed]
- Callis, N. Falls prevention: Identification of predictive fall risk factors. Appl. Nurs. Res. 2016, 29, 53–58. [Google Scholar] [PubMed]
- Rubenstein, L.Z. Falls in older people: Epidemiology, risk factors and strategies for prevention. Age Ageing 2006, 35 (Suppl. S2), ii37–ii41. [Google Scholar] [PubMed]
- Burns, E.R.; Stevens, J.A.; Lee, R. The direct costs of fatal and non-fatal falls among older adults—United States. J. Saf. Res. 2016, 58, 99–103. [Google Scholar]
- Lusardi, M.M.; Fritz, S.; Middleton, A.; Allison, L.; Wingood, M.; Phillips, E.; Criss, M.; Verma, S.; Osborne, J.; Chui, K.K. Determining risk of falls in community dwelling older adults: A systematic review and meta-analysis using posttest probability. J. Geriatr. Phys. Ther. 2017, 40, 1–36. [Google Scholar]
- Mishra, A.K.; Skubic, M.; Despins, L.A.; Popescu, M.; Keller, J.; Rantz, M.; Abbott, C.; Enayati, M.; Shalini, S.; Miller, S. Explainable fall risk prediction in older adults using gait and geriatric assessments. Front. Digit. Health 2022, 4, 869812. [Google Scholar]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar]
- Gould, H.; Brennan, S.L.; Kotowicz, M.A.; Nicholson, G.C.; Pasco, J.A. Total and appendicular lean mass reference ranges for Australian men and women: The Geelong osteoporosis study. Calcif. Tissue Int. 2014, 94, 363–372. [Google Scholar]
- Álvarez, M.N.; Rodríguez-Sánchez, C.; Huertas-Hoyas, E.; García-Villamil-Neira, G.; Espinoza-Cerda, M.T.; Pérez-Delgado, L.; Reina-Robles, E.; Martin, I.B.; Del-Ama, A.J.; Ruiz-Ruiz, L.; et al. Predictors of fall risk in older adults using the G-STRIDE inertial sensor: An observational multicenter case–control study. BMC Geriatr. 2023, 23, 379. [Google Scholar]
- Buatois, S.; Perret-Guillaume, C.; Gueguen, R.; Miget, P.; Vançon, G.; Perrin, P.; Benetos, A. A simple clinical scale to stratify risk of recurrent falls in community-dwelling adults aged 65 years and older. Phys. Ther. 2010, 90, 550–560. [Google Scholar]
- Beaudart, C.; McCloskey, E.; Bruyère, O.; Cesari, M.; Rolland, Y.; Rizzoli, R.; Araujo De Carvalho, I.; Amuthavalli Thiyagarajan, J.; Bautmans, I.; Bertière, M.-C.; et al. Sarcopenia in daily practice: Assessment and management. BMC Geriatr. 2016, 16, 10. [Google Scholar]
- Neri, S.G.R.; Lima, R.M.; Ribeiro, H.S.; Vainshelboim, B. Poor handgrip strength determined clinically is associated with falls in older women. J. Frailty Sarcopenia Falls 2021, 6, 43. [Google Scholar] [PubMed]
- de Aquino, M.P.M.; de Oliveira Cirino, N.T.; Lima, C.A.; de Miranda Ventura, M.; Hill, K.; Perracini, M.R. The Four Square Step Test is a useful mobility tool for discriminating older persons with frailty syndrome. Exp. Gerontol. 2022, 161, 111699. [Google Scholar] [PubMed]
- Laufer, Y. Age- and gender-related changes in the temporal-spatial characteristics of forwards and backwards gaits. Physiother. Res. Int. 2003, 8, 131–142. [Google Scholar]
- Fritz, N.E.; Worstell, A.M.; Kloos, A.D.; Siles, A.B.; White, S.E.; Kegelmeyer, D.A. Backward walking measures are sensitive to age-related changes in mobility and balance. Gait Posture 2013, 37, 593–597. [Google Scholar]
- Carter, V.; Jain, T.; James, J.; Cornwall, M.; Aldrich, A.; De Heer, H.D. The 3-m backwards walk and retrospective falls: Diagnostic accuracy of a novel clinical measure. J. Geriatr. Phys. Ther. 2019, 42, 249–255. [Google Scholar]
- Hao, J.; Pu, Y.; He, Z.; Remis, A.; Yao, Z.; Li, Y. Measurement properties of the backward walk test in people with balance and mobility deficits: A systematic review. Gait Posture 2024, 110, 1–9. [Google Scholar]
- Association, W.M. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar]
- Moher, D.; Hopewell, S.; Schulz, K.F.; Montori, V.; Gøtzsche, P.C.; Devereaux, P.; Elbourne, D.; Egger, M.; Altman, D.G. CONSORT 2010 explanation and elaboration: Updated guidelines for reporting parallel group randomised trials. Int. J. Surg. 2012, 10, 28–55. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar]
- Gale, C.R.; Westbury, L.D.; Cooper, C.; Dennison, E.M. Risk factors for incident falls in older men and women: The English longitudinal study of ageing. BMC Geriatr. 2018, 18, 141. [Google Scholar]
- Talbot, L.A.; Musiol, R.J.; Witham, E.K.; Metter, E.J. Falls in young, middle-aged and older community dwelling adults: Perceived cause, environmental factors and injury. BMC Public Health 2005, 5, 86. [Google Scholar]
- Sinaki, M.; Brey, R.H.; Hughes, C.A.; Larson, D.R.; Kaufman, K.R. Balance disorder and increased risk of falls in osteoporosis and kyphosis: Significance of kyphotic posture and muscle strength. Osteoporos. Int. 2005, 16, 1004–1010. [Google Scholar] [PubMed]
- Kaufman-Cohen, Y.; Ratzon, N.Z. Correlation between risk factors and musculoskeletal disorders among classical musicians. Occup. Med. 2011, 61, 90–95. [Google Scholar]
- Sherrington, C.; Michaleff, Z.A.; Fairhall, N.; Paul, S.S.; Tiedemann, A.; Whitney, J.; Cumming, R.G.; Herbert, R.D.; Close, J.C.T.; Lord, S.R. Exercise to prevent falls in older adults: An updated systematic review and meta-analysis. Br. J. Sports Med. 2017, 51, 1749–1757. [Google Scholar]
- Özden, F.; Özkeskin, M.; Bakırhan, S.; Şahin, S. The test–retest reliability and concurrent validity of the 3-m backward walk test and 50-ft walk test in community-dwelling older adults. Ir. J. Med. Sci. 2022, 191, 921–928. [Google Scholar]
- Barry, E.; Galvin, R.; Keogh, C.; Horgan, F.; Fahey, T. Is the Timed Up and Go test a useful predictor of risk of falls in community dwelling older adults: A systematic review and meta-analysis. BMC Geriatr. 2014, 14, 14. [Google Scholar]
- Taulbee, L.; Yada, T.; Graham, L.; O’Halloran, A.; Saracino, D.; Freund, J.; Vallabhajosula, S.; Balasubramanian, C.K. Use of backward walking speed to screen dynamic balance and mobility deficits in older adults living independently in the community. J. Geriatr. Phys. Ther. 2021, 44, 189–197. [Google Scholar]
- Edwards, E.M.; Daugherty, A.M.; Nitta, M.; Atalla, M.; Fritz, N.E. Backward walking sensitively detects fallers in persons with multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 45, 102390. [Google Scholar]
- Söke, F.; Demirkaya, Ş.; Yavuz, N.; Gülşen, E.Ö.; Tunca, Ö.; Gülşen, Ç.; Karakoç, S.; Koçer, B.; Aydin, F.; Yücesan, C. The 3-m backward walk test: Reliability and validity in ambulant people with multiple sclerosis. Int. J. Rehabil. Res. 2022, 45, 209–214. [Google Scholar]
- Kocer, B.; Soke, F.; Ataoglu, N.E.E.; Ersoy, N.; Gulsen, C.; Gulsen, E.O.; Yasa, M.E.; Uysal, I.; Comoglu, S.S.; Bora, H.A.T. The reliability and validity of the 3-m backward walk test in people with Parkinson’s disease. Ir. J. Med. Sci. 2023, 192, 3063–3071. [Google Scholar] [PubMed]
- Carter, V.A.; Farley, B.G.; Wing, K.; De Heer, H.D.; Jain, T.K. Precisión diagnóstica de la prueba de marcha atrás de 3 metros en personas con enfermedad de Parkinson. Temas Rehabil. Geriátrica 2020, 36, 140–145. [Google Scholar]
- Moreland, B.; Kakara, R.; Henry, A. Trends in nonfatal falls and fall-related injuries among adults aged ≥65 years—United States, 2012–2018. MMWR Morb. Mortal. Wkly. Rep. 2023, 69, 875–881. [Google Scholar]
- Lee, Y.C.; Chang, S.F.; Kao, C.Y.; Tsai, H.C. Muscle strength, physical fitness, balance, and walking ability at risk of fall for prefrail older people. BioMed Res. Int. 2022, 2022, 4581126. [Google Scholar]
- Li, W.; Rao, Z.; Fu, Y.; Schwebel, D.C.; Li, L.; Ning, P.; Huang, J.; Hu, G. Value of the short physical performance battery (SPPB) in predicting fall and fall-induced injury among old Chinese adults. BMC Geriatr. 2023, 23, 290. [Google Scholar]
- Adam, C.E.; Fitzpatrick, A.L.; Leary, C.S.; Hajat, A.; Ilango, S.D.; Park, C.; Phelan, E.A.; Semmens, E.O. Change in gait speed and fall risk among community-dwelling older adults with and without mild cognitive impairment: A retrospective cohort analysis. BMC Geriatr. 2023, 23, 890. [Google Scholar]
Variable | Non-Fallers (n = 382) | Fallers (n = 101) | p-Value |
---|---|---|---|
Female, (n, %) | 328 (85.9%) | 92 (91.1%) | <0.001 |
Age (years) | 75.9 ± 6.4 | 77.6 ± 6.8 | 0.150 |
Height (m) | 1.54 ± 0.08 | 1.54 ± 0.06 | 0.610 |
Weight (kg) | 64.7 ± 11.6 | 66.9 ± 11.6 | 0.151 |
BMI (kg/m2) | 27.2 ± 4.3 | 28.3 ± 4.6 | 0.038 |
SMI (kg/m2) | 7.5 ± 0.9 | 6.2 ± 0.9 | <0.001 |
3m-BWT (s) | 5.1 ± 1.3 | 6.8 ± 3.4 | <0.001 |
TUG (s) | 8.6 ± 1.8 | 10.1 ± 3.3 | <0.001 |
5STS (s) | 9.5 ± 2.2 | 11.4 ± 4.6 | <0.001 |
GS (m/s) | 1.20 ± 0.3 | 1.07 ± 0.26 | <0.001 |
SPPB | 11.6 ± 0.9 | 10.9 ± 1.8 | <0.001 |
HG (Kg) | 22.6 ± 6.2 | 21 ± 5.4 | 0.018 |
4SST (s) | 6.4 ± 1.5 | 7.4 ± 2.4 | <0.001 |
Functional Variables | r (CI 95%) | rp | p-Value |
---|---|---|---|
TUG a | 0.632 (0.575, 0.682) | 0.581 | <0.001 |
5STS a | 0.528 (0.460, 0.589) | 0.505 | <0.001 |
GS a | −0.517 (−0.579, −0.448) | −0.469 | <0.001 |
SPPB a | −0.511 (−0.574, −0.442) | −0.477 | <0.001 |
HG a | −0.199 (−0.283, −0.112) | −0.168 | <0.001 |
4SST a | 0.596 (0.547, 0.644) | 0.571 | <0.001 |
Functional Variable | AUC | 95% CI for AUC | p-Value |
---|---|---|---|
3m-BWT | 0.655 | 0.592–0.719 | <0.001 |
TUG | 0.637 | 0.573–0.702 | 0.011 |
5STS | 0.636 | 0.573–0.699 | <0.001 |
GS | 0.362 | 0.303–0.422 | <0.001 |
SPPB | 0.415 | 0.349–0.482 | 0.013 |
4SST | 0.630 | 0.566–0.694 | <0.001 |
HG | 0.424 | 0.363–0.484 | 0.180 |
Cut-Off Points | Sensitivity (%) | Specificity (%) | Youden’s Index (J) |
---|---|---|---|
3.0 s | 99.0 | 2.1 | 0.011 |
3.5 s | 98.0 | 9.8 | 0.079 |
4.0 s | 89.1 | 22.8 | 0.119 |
4.5 s | 79.2 | 37.7 | 0.169 |
5.0 s | 63.4 | 50.0 | 0.134 |
5.5 s | 59.5 | 68.6 | 0.280 |
6.0 s | 46.5 | 76.4 | 0.230 |
6.5 s | 37.6 | 86.1 | 0.237 |
7.0 s | 34.7 | 92.1 | 0.268 |
7.5 s | 26.7 | 95.5 | 0.222 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polo-Ferrero, L.; Torres-Alonso, J.; Sánchez-Sánchez, M.C.; Puente-González, A.S.; Barbero-Iglesias, F.J.; Méndez-Sánchez, R. The Predictive Capacity of the 3-Meter Backward Walk Test for Falls in Older Adults: A Case–Control Analysis. J. Funct. Morphol. Kinesiol. 2025, 10, 154. https://doi.org/10.3390/jfmk10020154
Polo-Ferrero L, Torres-Alonso J, Sánchez-Sánchez MC, Puente-González AS, Barbero-Iglesias FJ, Méndez-Sánchez R. The Predictive Capacity of the 3-Meter Backward Walk Test for Falls in Older Adults: A Case–Control Analysis. Journal of Functional Morphology and Kinesiology. 2025; 10(2):154. https://doi.org/10.3390/jfmk10020154
Chicago/Turabian StylePolo-Ferrero, Luis, Javier Torres-Alonso, María Carmen Sánchez-Sánchez, Ana Silvia Puente-González, Fausto J. Barbero-Iglesias, and Roberto Méndez-Sánchez. 2025. "The Predictive Capacity of the 3-Meter Backward Walk Test for Falls in Older Adults: A Case–Control Analysis" Journal of Functional Morphology and Kinesiology 10, no. 2: 154. https://doi.org/10.3390/jfmk10020154
APA StylePolo-Ferrero, L., Torres-Alonso, J., Sánchez-Sánchez, M. C., Puente-González, A. S., Barbero-Iglesias, F. J., & Méndez-Sánchez, R. (2025). The Predictive Capacity of the 3-Meter Backward Walk Test for Falls in Older Adults: A Case–Control Analysis. Journal of Functional Morphology and Kinesiology, 10(2), 154. https://doi.org/10.3390/jfmk10020154