Executive Function Response to Moderate-to-High-Intensity Rope Skipping in Overweight Adolescents Aged 12–14: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Study Intervention
2.3. Study Outcomes
2.3.1. Flanker Task
2.3.2. SST
2.3.3. 2-Back Task
2.3.4. MOS Task
2.4. Quality Monitoring
2.5. Statistical Analysis
3. Results
3.1. Correlation Between BMI and EF in Adolescents
3.2. Descriptive Statistics and Comparative Analysis of Pre-Exercise Intervention
3.3. Effects of Moderate-to-High-Intensity Rope Skipping on BMI in Normal Weight and Overweight/Obese Adolescents
3.4. Effects of Moderate-to-High-Intensity Rope Skipping on EF in Normal Weight and Overweight/Obese Adolescents
3.4.1. Effects of Moderate-to-High-Intensity Rope Skipping on Cognitive and Behavioral Inhibitory in Normal Weight and Overweight/Obese Adolescents
3.4.2. Effects of Moderate-to-High-Intensity Rope Skipping on Working Memory in Normal Weight and Overweight/Obese Adolescents
3.4.3. Effects of Moderate-to-High-Intensity Rope Skipping on Cognitive Flexibility in Normal Weight and Overweight/Obese Adolescents
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EF | Executive function |
BMI | Body mass index |
PA | Physical activity |
N-C | Normal weight control group |
N-E | Normal weight exercise group |
OV-C | Overweight control group |
OV-E | Overweight exercise group |
OB-C | Obese control group |
OB-E | Obese exercise group |
WMH | White matter hyperintensity |
PFC | Prefrontal cortex |
HRmax | Maximum heart rate |
RS | Rope skipping |
SST | Stop-Signal Task |
MOS | More-odd Shifting |
RT | Reaction time |
ACC | Accuracy |
ms | Millisecond |
DLPFC | Left dorsolateral prefrontal cortex |
MICT | Moderate-intensity interventions |
HIIT | High-intensity interval training |
EEG | Electroencephalography |
References
- Federation, W.O. World Obesity Atlas 2024. 2024. Available online: https://www.worldobesityday.org (accessed on 4 March 2024).
- Dong, Y.H.; Chen, L.; Liu, J.Y.; Ma, T.; Zhang, Y.; Chen, M.M.; Zhong, P.L.; Shi, D.; Hu, P.J.; Li, J.; et al. Epidemiology and prediction of overweight and obesity among children and adolescents aged 7–18 years in China from 1985 to 2019. Chin. J. Prev. Med. 2023, 57, 11–19. (In Chinese) [Google Scholar] [CrossRef]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Volger, S.; Rigassio Radler, D.; Rothpletz-Puglia, P. Early childhood obesity prevention efforts through a life course health development perspective: A scoping review. PLoS ONE 2018, 13, e0209787. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Sun, J.; Zeng, N.; Hui, Y.; Li, J.; Liu, W.; Zhao, X.; Zhao, P.; Chen, S.; Wu, S.; Wang, Z.; et al. Association of variability in body size with neuroimaging metrics of brain health: A population-based cohort study. Lancet Reg. Health West. Pac. 2024, 44, 101015. [Google Scholar] [CrossRef]
- Blair, C.; Kuzawa, C.W.; Willoughby, M.T. The development of executive function in early childhood is inversely related to change in body mass index: Evidence for an energetic tradeoff? Dev. Sci. 2020, 23, e12860. [Google Scholar] [CrossRef]
- Fernandes, A.C.; Viegas, Â.A.; Lacerda, A.C.R.; Nobre, J.N.P.; Morais, R.L.S.; Figueiredo, P.H.S.; Costa, H.S.; Camargos, A.C.R.; Ferreira, F.O.; de Freitas, P.M.; et al. Association between executive functions and gross motor skills in overweight/obese and eutrophic preschoolers: Cross-sectional study. BMC Pediatr. 2022, 22, 498. [Google Scholar] [CrossRef]
- Hamer, M.; Batty, G.D. Association of body mass index and waist-to-hip ratio with brain structure: UK Biobank study. Neurology 2019, 92, e594–e600. [Google Scholar] [CrossRef]
- Lundh, H.; Arvidsson, D.; Greven, C.; Fridolfsson, J.; Börjesson, M.; Boman, C.; Lauruschkus, K.; Lundqvist, S.; Melin, K.; Bernhardsson, S. Physical activity and sedentary behaviour amongst children with obesity—Exploring cross-sectional associations between child and parent. J. Act. Sedentary Sleep Behav. 2025, 4, 2. [Google Scholar] [CrossRef]
- Chaddock, L.; Erickson, K.I.; Prakash, R.S.; Kim, J.S.; Voss, M.W.; Vanpatter, M.; Pontifex, M.B.; Raine, L.B.; Konkel, A.; Hillman, C.H.; et al. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res. 2010, 1358, 172–183. [Google Scholar] [CrossRef]
- Chaddock-Heyman, L.; Erickson, K.I.; Kienzler, C.; Drollette, E.S.; Raine, L.B.; Kao, S.C.; Bensken, J.; Weisshappel, R.; Castelli, D.M.; Hillman, C.H.; et al. Physical Activity Increases White Matter Microstructure in Children. Front. Neurosci. 2018, 12, 950. [Google Scholar] [CrossRef] [PubMed]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- D’Ardenne, K.; Eshel, N.; Luka, J.; Lenartowicz, A.; Nystrom, L.E.; Cohen, J.D. Role of prefrontal cortex and the midbrain dopamine system in working memory updating. Proc. Natl. Acad. Sci. USA 2012, 109, 19900–19909. [Google Scholar] [CrossRef]
- Humińska-Lisowska, K. Dopamine in Sports: A Narrative Review on the Genetic and Epigenetic Factors Shaing Personality and Athletic Performance. Int. J. Mol. Sci. 2024, 25, 11602. [Google Scholar] [CrossRef]
- Söderqvist, S.; Bergman Nutley, S.; Peyrard-Janvid, M.; Matsson, H.; Humphreys, K.; Kere, J.; Klingberg, T. Dopamine, working memory, and training induced plasticity: Implications for developmental research. Dev. Psychol. 2012, 48, 836–843. [Google Scholar] [CrossRef]
- Coffey, V.G.; Hawley, J.A. The molecular bases of training adaptation. Sports Med. 2007, 37, 737–763. [Google Scholar] [CrossRef]
- Hawley, J.A.; Gibala, M.J. What’s new since Hippocrates? Preventing type 2 diabetes by physical exercise and diet. Diabetologia 2012, 55, 535–539. [Google Scholar] [CrossRef]
- Xue, Y.; Yang, Y.; Huang, T. Effects of chronic exercise interventions on executive function among children and adolescents: A systematic review with meta-analysis. Br. J. Sports Med. 2019, 53, 1397–1404. [Google Scholar] [CrossRef]
- Moreau, D.; Chou, E. The Acute Effect of High-Intensity Exercise on Executive Function: A Meta-Analysis. Perspect. Psychol. Sci. 2019, 14, 734–764. [Google Scholar] [CrossRef]
- Ishihara, T.; Sugasawa, S.; Matsuda, Y.; Mizuno, M. Relationship of tennis play to executive function in children and adolescents. Eur. J. Sport. Sci. 2017, 17, 1074–1083. [Google Scholar] [CrossRef]
- Gallotta, M.C.; Emerenziani, G.P.; Iazzoni, S.; Meucci, M.; Baldari, C.; Guidetti, L. Impacts of coordinative training on normal weight and overweight/obese children’s attentional performance. Front. Hum. Neurosci. 2015, 9, 577. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wang, X.T.; Xu, S.H.; Tang, Z.X.; Li, H.L.; Jing, J.J.; Tang, W.K.; Chen, X.Y.; Lan, R.L.; Zhu, Y.N. Effects of caloric restriction and rope-skipping exercise on cardiometabolic risk factors in overweight or obese college students. Chin. J. Prev. Med. 2022, 56, 1272–1278. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, X.; He, Q.; Jia, Y. Effects of acute rope skipping exercises of different exercise modes on cognitive function in 9-10-year-old children. Sci. Rep. 2024, 14, 29172. [Google Scholar] [CrossRef]
- Theodoraki, T.E.; McGeown, S.P.; Rhodes, S.M.; MacPherson, S.E. Developmental changes in executive functions during adolescence: A study of inhibition, shifting, and working memory. Br. J. Dev. Psychol. 2020, 38, 74–89. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Wang, X.J.; Luo, W.F.; Wang, L.J.; Mao, C.J.; Wang, L.; Liu, C.F. Study on uric acid and the related factors associated with cognition in the patients with Parkinson’s disease. Chin. J. Prev. Med. 2009, 89, 1633–1635. (In Chinese) [Google Scholar]
- Ziereis, S.; Jansen, P. Effects of physical activity on executive function and motor performance in children with ADHD. Res. Dev. Disabil. 2015, 38, 181–191. [Google Scholar] [CrossRef]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef]
- Pliszka, S.R.; Borcherding, S.H.; Spratley, K.; Leon, S.; Irick, S. Measuring inhibitory control in children. J. Dev. Behav. Pediatr. 1997, 18, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Owen, A.M.; McMillan, K.M.; Laird, A.R.; Bullmore, E. N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 2005, 25, 46–59. [Google Scholar] [CrossRef]
- Salthouse, T.A.; Fristoe, N.; McGuthry, K.E.; Hambrick, D.Z. Relation of task switching to speed, age, and fluid intelligence. Psychol. Aging 1998, 13, 445–461. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, B.A.; Eriksen, C.W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 1974, 16, 143–149. [Google Scholar] [CrossRef]
- Hillman, C.H.; Kramer, A.F.; Belopolsky, A.V.; Smith, D.P. A cross-sectional examination of age and physical activity on performance and event-related brain potentials in a task switching paradigm. Int. J. Psychophysiol. 2006, 59, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Qiu, H.; Wang, P.; Sit, C.H.P. The impacts of a combined exercise on executive function in children with ADHD: A randomized controlled trial. Scand. J. Med. Sci. Sports 2022, 32, 1297–1312. [Google Scholar] [CrossRef]
- Friedman, N.P.; Miyake, A. The relations among inhibition and interference control functions: A latent-variable analysis. J. Exp. Psychol. Gen. 2004, 133, 101–135. [Google Scholar] [CrossRef]
- Baddeley, A. Working memory: Theories, models, and controversies. Annu. Rev. Psychol. 2012, 63, 1–29. [Google Scholar] [CrossRef]
- D’Esposito, M.; Postle, B.R. The cognitive neuroscience of working memory. Annu. Rev. Psychol. 2015, 66, 115–142. [Google Scholar] [CrossRef]
- Dajani, D.R.; Uddin, L.Q. Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience. Trends Neurosci. 2015, 38, 571–578. [Google Scholar] [CrossRef]
- Smith, E.; Hay, P.; Campbell, L.; Trollor, J.N. A review of the association between obesity and cognitive function across the lifespan: Implications for novel approaches to prevention and treatment. Obes. Rev. 2011, 12, 740–755. [Google Scholar] [CrossRef]
- Arnoriaga-Rodríguez, M.; Mayneris-Perxachs, J.; Burokas, A.; Contreras-Rodríguez, O.; Blasco, G.; Coll, C.; Biarnés, C.; Miranda-Olivos, R.; Latorre, J.; Moreno-Navarrete, J.M.; et al. Obesity Impairs Short-Term and Working Memory through Gut Microbial Metabolism of Aromatic Amino Acids. Cell Metab. 2020, 32, 548–560.e7. [Google Scholar] [CrossRef]
- Yau, P.L.; Kang, E.H.; Javier, D.C.; Convit, A. Preliminary evidence of cognitive and brain abnormalities in uncomplicated adolescent obesity. Obesity 2014, 22, 1865–1871. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.; Yordanova, Y.N.; Noblet, V.; Herbet, G.; Ricard, D. White matter tracts and executive functions: A review of causal and correlation evidence. Brain 2024, 147, 352–371. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.J.; Benedict, C.; Burgos, J.; Kempton, M.J.; Kullberg, J.; Nordenskjöld, R.; Kilander, L.; Nylander, R.; Larsson, E.M.; Johansson, L.; et al. Late-life obesity is associated with smaller global and regional gray matter volumes: A voxel-based morphometric study. Int. J. Obes. 2013, 37, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Winkler, Z.; Kuti, D.; Polyák, Á.; Juhász, B.; Gulyás, K.; Lénárt, N.; Dénes, Á.; Ferenczi, S.; Kovács, K.J. Hypoglycemia-activated Hypothalamic Microglia Impairs Glucose Counterregulatory Responses. Sci. Rep. 2019, 9, 6224. [Google Scholar] [CrossRef]
- Gluck, M.E.; Viswanath, P.; Stinson, E.J. Obesity, Appetite, and the Prefrontal Cortex. Curr. Obes. Rep. 2017, 6, 380–388. [Google Scholar] [CrossRef]
- Olsthoorn, L.; Vreeken, D.; Kiliaan, A.J. Gut Microbiome, Inflammation, and Cerebrovascular Function: Link Between Obesity and Cognition. Front. Neurosci. 2021, 15, 761456. [Google Scholar] [CrossRef]
- Mora-Gonzalez, J.; Esteban-Cornejo, I.; Solis-Urra, P.; Rodriguez-Ayllon, M.; Cadenas-Sanchez, C.; Hillman, C.H.; Kramer, A.F.; Catena, A.; Ortega, F.B. The effects of an exercise intervention on neuroelectric activity and executive function in children with overweight/obesity: The ActiveBrains randomized controlled trial. Scand. J. Med. Sci. Sports 2024, 34, e14486. [Google Scholar] [CrossRef]
- Meijer, A.; Königs, M.; van der Fels, I.M.J.; Visscher, C.; Bosker, R.J.; Hartman, E.; Oosterlaan, J. The Effects of Aerobic Versus Cognitively Demanding Exercise Interventions on Executive Functioning in School-Aged Children: A Cluster-Randomized Controlled Trial. J. Sport. Exerc. Psychol. 2020, 43, 1–13. [Google Scholar] [CrossRef]
- de Bruijn, A.G.M.; van der Fels, I.M.J.; Renken, R.J.; Königs, M.; Meijer, A.; Oosterlaan, J.; Kostons, D.D.N.M.; Visscher, C.; Bosker, R.J.; Smith, J.; et al. Differential effects of long-term aerobic versus cognitively-engaging physical activity on children’s visuospatial working memory related brain activation: A cluster RCT. Brain Cogn. 2021, 155, 105812. [Google Scholar] [CrossRef]
- Wassenaar, T.M.; Wheatley, C.M.; Beale, N.; Nichols, T.v.; Salvan, P.; Meaney, A.; Atherton, K.; Diaz-Ordaz, K.; Dawes, H.; Johansen-Berg, H. The effect of a one-year vigorous physical activity intervention on fitness, cognitive performance and mental health in young adolescents: The Fit to Study cluster randomised controlled trial. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 47. [Google Scholar] [CrossRef]
- Ortega, F.B.; Mora-Gonzalez, J.; Cadenas-Sanchez, C.; Esteban-Cornejo, I.; Migueles, J.H.; Solis-Urra, P.; Verdejo-Román, J.; Rodriguez-Ayllon, M.; Molina-Garcia, P.; Ruiz, J.R.; et al. Effects of an Exercise Program on Brain Health Outcomes for Children With Overweight or Obesity: The ActiveBrains Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e2227893. [Google Scholar] [CrossRef] [PubMed]
- Costigan, S.A.; Eather, N.; Plotnikoff, R.C.; Hillman, C.H.; Lubans, D.R. High-Intensity Interval Training for Cognitive and Mental Health in Adolescents. Med. Sci. Sports Exerc. 2016, 48, 1985–1993. [Google Scholar] [CrossRef]
- Bleiweiss-Sande, R.; Chui, K.; Wright, C.; Amin, S.; Anzman-Frasca, S.; Sacheck, J.M. Associations between Food Group Intake, Cognition, and Academic Achievement in Elementary Schoolchildren. Nutrients 2019, 11, 2722. [Google Scholar] [CrossRef] [PubMed]
- Lucassen, E.A.; Piaggi, P.; Dsurney, J.; de Jonge, L.; Zhao, X.C.; Mattingly, M.S.; Ramer, A.; Gershengorn, J.; Csako, G.; Cizza, G.; et al. Sleep extension improves neurocognitive functions in chronically sleep-deprived obese individuals. PLoS ONE 2014, 9, e84832. [Google Scholar] [CrossRef] [PubMed]
Study | Groups | Number | Age | Body Mass Index |
---|---|---|---|---|
(Female/Male) | (Years Old) | (kg/m2) | ||
Part one: The correlation between body mass index and EF | Normal weight group | 96 (50/46) | 13.11 ± 0.28 | 19.10 ± 1.52 |
Overweight group | 47 (23/24) | 13.17 ± 0.21 | 23.43 ± 1.06 | |
Obese group | 23 (9/14) | 13.23 ± 0.28 | 27.10 ± 1.49 | |
Part two: The effect of an 8-week moderate-to-high-intensity rope skipping training in adolescents | Normal weight control group (N-C) | 23 (12/11) | 13.08 ± 0.31 | 18.56 ± 1.38 |
Normal weight exercise group (N-E) | 23 (12/11) | 13.15 ± 0.28 | 18.66 ± 1.37 | |
Overweight control group (OV-C) | 13 (7/6) | 13.12 ± 0.15 | 24.19 ± 0.88 | |
Overweight exercise (OV-E) | 14 (6/8) | 13.16 ± 0.28 | 24.15 ± 0.66 | |
Obese control group (OB-C) | 12 (6/6) | 13.24 ± 0.30 | 27.04 ± 1.05 | |
Obese exercise group (OB-E) | 11 (5/6) | 13.19 ± 0.27 | 26.72 ± 1.05 |
Process | Warm-Up | RS Training | Relaxation |
---|---|---|---|
Time | 10 min | 30 min | 10 min |
Content | (1) Jogging (2) High knees (3) Butt kicks (4) Bounding (5) Grapevines (6) Slow skipping (7) Lateral bounding (8) Hamstring extension | Content of each set (1) 30 s RS (60–80 jumps) 30 s rest (2) 60 s RS (120–160 jumps) 60 s rest (3) 90 s RS (180–240 jumps) 90 s rest Repeat 5 sets | (1) Thigh stretch (2) Calf stretch (3) Side stretch (4) Lunge stretch |
Exercise intensity | 50% HRmax–59% HRmax (105–124 beats/minute) | 60% HRmax–79% HRmax (125–165 beats/minute) | <50% HRmax (<105 beats/minute) |
Groups | NG (n = 42) | OVG (n = 22) | OBG (n = 19) | F | p-Value |
---|---|---|---|---|---|
Flanker RT (ms) | 19.24 ± 5.32 | 26.64 ± 4.54 | 34.49 ± 4.66 | 96.617 | <0.0001 **** |
SST RT (ms) | 345.06 ± 22.48 | 366.80 ± 19.50 | 386.70 ± 24.06 | 39.376 | <0.0001 **** |
2-Back RT (ms) | 567.99 ± 50.00 | 624.27 ± 56.41 | 670.64 ± 51.02 | 43.479 | <0.0001 **** |
MOS RT (ms) | 335.93 ± 100.05 | 428.37 ± 67.73 | 475.67 ± 91.05 | 30.387 | <0.0001 **** |
Flanker ACC (%) | 95 ± 2 | 96 ± 2 | 96 ± 2 | 2.375 | 0.096 |
SST ACC (%) | 90 ± 4 | 91 ± 3 | 91 ± 4 | 2.031 | 0.135 |
2-Back ACC (%) | 85 ± 6 | 81 ± 6 | 81 ± 7 | 7.906 | 0.001 *** |
MOS ACC (%) | 88 ± 4 | 86 ± 4 | 85 ± 4 | 3.581 | 0.030 * |
Groups | N-C (n = 21) | N-E (n = 21) | Bonferroni | OV-C (n = 10) | OV-E (n = 12) | Bonferroni | OB-C (n = 10) | OB-E (n = 9) | Bonferroni | ANOVA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BMI Grouping | Intervention Way | Main (BMI × Intervention) | |||||||||||||||||||
95% CI | p | 95% CI | p | 95% CI | p | F | p | ηP2 | F | p | ηP2 | F | p | ηP2 | |||||||
Flanker RT (ms) | 18.83 ± 5.62 | 14.30 ± 4.68 | 1.461, 7.595 | 0.004 ** | 25.56 ± 6.04 | 16.92 ± 4.20 | 4.379, 12.889 | 0.0001 **** | 34.51 ± 4.43 | 22.21 ± 4.26 | 7.735, 16.867 | 0.0001 **** | 36.812 | 0.0001 **** | 0.489 | 53.159 | 0.0001 **** | 0.408 | 4.189 | 0.019 * | 0.098 |
SST RT (ms) | 339.84 ± 22.87 | 331.95 ± 15.37 | −4.567, 20.358 | 0.211 | 371.45 ± 29.80 | 342.87 ± 15.60 | 11.294, 45.876 | 0.002 ** | 385.36 ± 13.14 | 353.54 ± 23.02 | 13.261, 50.370 | 0.001 *** | 20.166 | 0.0001 **** | 0.344 | 23.160 | 0.0001 **** | 0.231 | 3.128 | 0.049 * | 0.075 |
2-Back RT (ms) | 566.87 ± 55.49 | 542.74 ± 65.06 | −13.523, 61.784 | 0.206 | 622.42 ± 45.50 | 563.45 ± 82.99 | 6.726, 111.210 | 0.027 * | 658.72 ± 61.91 | 607.93 ± 41.73 | −5.268, 106.852 | 0.075 | 11.125 | 0.0001 **** | 0.224 | 9.751 | 0.003 ** | 0.112 | 0.686 | 0.507 | 0.081 |
MOS RT (ms) | 341.96 ± 69.68 | 285.99 ± 86.36 | 10.631, 101.306 | 0.016 * | 426.89 ± 85.24 | 320.69 ± 55.01 | 43.294, 169.101 | 0.001 *** | 459.10 ± 69.75 | 372.29 ± 61.57 | 19.311, 154.312 | 0.012 * | 13.584 | 0.0001 **** | 0.261 | 23.257 | 0.0001 **** | 0.232 | 0.895 | 0.413 | 0.023 |
Flanker ACC (%) | 96 ± 1 | 96 ± 1 | −0.8, 1.2 | 0.659 | 96 ± 2 | 96 ± 1 | −1.0, 1.7 | 0.596 | 96 ± 1 | 96 ± 1 | −1.6, 1.3 | 0.869 | 1.095 | 0.340 | 0.028 | 0.152 | 0.697 | 0.002 | 0.120 | 0.887 | 0.003 |
SST ACC (%) | 91 ± 4 | 93 ± 2 | −3.8, 0.8 | 0.189 | 90 ± 4 | 92 ± 2 | −6.0, 0.4 | 0.082 | 90 ±3 | 92 ±4 | −6.0, 0.9 | 0.140 | 0.540 | 0.585 | 0.014 | 6.980 | 0.010 * | 0.083 | 0.261 | 0.771 | 0.007 |
2-Back ACC (%) | 85 ± 6 | 86 ± 5 | −5.4, 2.3 | 0.432 | 81 ± 4 | 82 ± 8 | −6.9, 3.8 | 0.560 | 82 ± 4 | 83 ± 7 | −6.9, 4.6 | 0.691 | 3.221 | 0.045* | 0.077 | 0.937 | 0.336 | 0.012 | 0.007 | 0.993 | 0.000 |
MOS ACC (%) | 83 ± 3 | 90 ± 3 | −5.7, −1.2 | 0.003 ** | 86 ± 4 | 90 ± 2 | −7.5, −1.2 | 0.007 ** | 85 ± 3 | 89 ± 3 | −7.5, −5 | 0.025 * | 0.415 | 0.661 | 0.011 | 20.703 | 0.0001 **** | 0.212 | 0.103 | 0.903 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Wang, X.; Zhang, L. Executive Function Response to Moderate-to-High-Intensity Rope Skipping in Overweight Adolescents Aged 12–14: A Preliminary Study. J. Funct. Morphol. Kinesiol. 2025, 10, 152. https://doi.org/10.3390/jfmk10020152
Yu Q, Wang X, Zhang L. Executive Function Response to Moderate-to-High-Intensity Rope Skipping in Overweight Adolescents Aged 12–14: A Preliminary Study. Journal of Functional Morphology and Kinesiology. 2025; 10(2):152. https://doi.org/10.3390/jfmk10020152
Chicago/Turabian StyleYu, Qian, Xiaodong Wang, and Lin Zhang. 2025. "Executive Function Response to Moderate-to-High-Intensity Rope Skipping in Overweight Adolescents Aged 12–14: A Preliminary Study" Journal of Functional Morphology and Kinesiology 10, no. 2: 152. https://doi.org/10.3390/jfmk10020152
APA StyleYu, Q., Wang, X., & Zhang, L. (2025). Executive Function Response to Moderate-to-High-Intensity Rope Skipping in Overweight Adolescents Aged 12–14: A Preliminary Study. Journal of Functional Morphology and Kinesiology, 10(2), 152. https://doi.org/10.3390/jfmk10020152