Positional Differences in Youth Water Polo Players: Cognitive Functions, Specific Swimming Capacities and Anthropometric Characteristics
Abstract
:1. Introduction
1.1. Cognitive Functions
1.2. Water Polo
1.3. Playing Positions in Water Polo
2. Materials and Methods
2.1. Participants
2.2. Study Protocol
2.3. Anthropometric Measurements
2.4. Specific Functional Swimming Tests
2.5. Cognitive Performance
2.6. Statistical Analyses
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. One-Way ANOVA
3.3. ANCOVA
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Salvo, V.; Baron, R.; Tschan, H.; Calderon Montero, F.J.; Bachl, N.; Pigozzi, F. Performance characteristics according to playing position in elite soccer. Int. J. Sports Med. 2007, 28, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Blecharz, J.; Wrzesniewski, K.; Siekanska, M.; Ambrozy, T.; Spieszny, M. Cognitive Factors in Elite Handball: Do Players’ Positions Determine Their Cognitive Processes? J. Hum. Kinet. 2022, 82, 213–221. [Google Scholar] [CrossRef]
- Kalen, A.; Bisagno, E.; Musculus, L.; Raab, M.; Perez-Ferreiros, A.; Williams, A.M.; Araujo, D.; Lindwall, M.; Ivarsson, A. The role of domain-specific and domain-general cognitive functions and skills in sports performance: A meta-analysis. Psychol. Bull. 2021, 147, 1290–1308. [Google Scholar] [CrossRef]
- Walsh, V. Is sport the brain’s biggest challenge? Curr. Biol. 2014, 24, R859–R860. [Google Scholar] [CrossRef]
- Walton, C.C.; Keegan, R.J.; Martin, M.; Hallock, H. The Potential Role for Cognitive Training in Sport: More Research Needed. Front. Psychol. 2018, 9, 1121. [Google Scholar] [CrossRef]
- Yarrow, K.; Brown, P.; Krakauer, J.W. Inside the brain of an elite athlete: The neural processes that support high achievement in sports. Nat. Rev. Neurosci. 2009, 10, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Tomporowski, P.D.; Pesce, C. Exercise, sports, and performance arts benefit cognition via a common process. Psychol. Bull. 2019, 145, 929–951. [Google Scholar] [CrossRef] [PubMed]
- Vestberg, T.; Gustafson, R.; Maurex, L.; Ingvar, M.; Petrovic, P. Executive functions predict the success of top-soccer players. PLoS ONE 2012, 7, e34731. [Google Scholar] [CrossRef]
- Sarmento, H.; Anguera, M.T.; Pereira, A.; Araújo, D. Talent Identification and Development in Male Football: A Systematic Review. Sports Med. 2018, 48, 907–931. [Google Scholar] [CrossRef]
- Bertollo, M.; Saltarelli, B.; Robazza, C. Mental preparation strategies of elite modern pentathletes. Psychol. Sport. Exerc. 2009, 10, 244–254. [Google Scholar] [CrossRef]
- Pietro, M. Monitoring and upgrading of coordinative and conditional capacities of young athletes practicing handball. J. Phys. Educ. Sport. 2018, 18, 465–468. [Google Scholar] [CrossRef]
- Brigitta Kiss, L.B. A study of key cognitive skills in handball using the Vienna test system. J. Phys. Educ. Sport. 2019, 19, 733–741. [Google Scholar] [CrossRef]
- Scharfen, H.E.; Memmert, D. The Relationship Between Cognitive Functions and Sport-Specific Motor Skills in Elite Youth Soccer Players. Front. Psychol. 2019, 10, 817. [Google Scholar] [CrossRef] [PubMed]
- Hodges, N.J.; Starkes, J.L.; MacMahon, C. Expert Performance in Sport: A Cognitive Perspective. In The Cambridge Handbook of Expertise and Expert Performance; Cambridge University Press: New York, NY, USA, 2006; pp. 471–488. [Google Scholar]
- Williams, A.M.; Ward, P.; Knowles, J.M.; Smeeton, N.J. Anticipation skill in a real-world task: Measurement, training, and transfer in tennis. J. Exp. Psychol. Appl. 2002, 8, 259–270. [Google Scholar] [CrossRef]
- Williams, A.M.; Hodges, N.J. Practice, instruction and skill acquisition in soccer: Challenging tradition. J. Sports Sci. 2005, 23, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Viero, V.; Triossi, T.; Bianchi, D.; Campagna, A.; Melchiorri, G. Physical and performance variables for talent identification in water polo. J. Sports Med. Phys. Fit. 2020, 60, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Mann, D.T.; Williams, A.M.; Ward, P.; Janelle, C.M. Perceptual-cognitive expertise in sport: A meta-analysis. J. Sport. Exerc. Psychol. 2007, 29, 457–478. [Google Scholar] [CrossRef]
- Voss, M.W.; Kramer, A.F.; Basak, C.; Prakash, R.S.; Roberts, B. Are expert athletes ‘expert’ in the cognitive laboratory? A meta-analytic review of cognition and sport expertise. Appl. Cogn. Psychol. 2010, 24, 812–826. [Google Scholar] [CrossRef]
- Kovacevic, N.; Mihanovic, F.; Lusic Kalcina, L.; Hrbic, K.; Poklepovic Pericic, T.; Matijas, T.; Galic, T. Influence of cognitive performance and swimming capacities on selection of youth water polo players to national team. J. Sports Med. Phys. Fit. 2023, 63, 34–41. [Google Scholar] [CrossRef]
- Trecroci, A.; Duca, M.; Cavaggioni, L.; Rossi, A.; Scurati, R.; Longo, S.; Merati, G.; Alberti, G.; Formenti, D. Relationship between Cognitive Functions and Sport-Specific Physical Performance in Youth Volleyball Players. Brain Sci. 2021, 11, 227. [Google Scholar] [CrossRef]
- Kujawski, S.; Kujawska, A. How can cognitive science contribute to sport? How can sport contribute to neuroscience? Balt. J. Health Phys. Act. 2016, 8, 58–65. [Google Scholar] [CrossRef]
- Mangine, G.T.; Hoffman, J.R.; Wells, A.J.; Gonzalez, A.M.; Rogowski, J.P.; Townsend, J.R.; Jajtner, A.R.; Beyer, K.S.; Bohner, J.D.; Pruna, G.J.; et al. Visual tracking speed is related to basketball-specific measures of performance in NBA players. J. Strength. Cond. Res. 2014, 28, 2406–2414. [Google Scholar] [CrossRef]
- Ong, N.C.H. The use of the Vienna Test System in sport psychology research: A review. Int. Rev. Sport. Exerc. Psychol. 2015, 8, 204–223. [Google Scholar] [CrossRef]
- Kovačević, N.; Mihanović, F.; Lušić Kalcina, L.; Pavlinovic, V.; Foretic, N.; Galić, T. Cognitive Functions of Youth Water Polo Players. Sport. Mont. 2023, 21, 91–96. [Google Scholar] [CrossRef]
- Wagner, H.; Finkenzeller, T.; Würth, S.; von Duvillard, S.P. Individual and team performance in team-handball: A review. J. Sports Sci. Med. 2014, 13, 808–816. [Google Scholar] [PubMed]
- Silva, J.M. Psychological Aspects in the Training and Performance of Team Handball Athletes. In The Sport Psychologist’s Handbook: A Guide for Sport-Specific Performance Enhancement; Dosil, J., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 211–243. [Google Scholar]
- Lupo, C.; Minganti, C.; Cortis, C.; Perroni, F.; Capranica, L.; Tessitore, A. Effects of competition level on the centre forward role of men’s water polo. J. Sports Sci. 2012, 30, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.G.; Vila, M.H.; Ferragut, C.; Noguera, M.M.; Abraldes, J.A.; Rodriguez, N.; Freeston, J.; Alcaraz, P.E. Position-specific anthropometry and throwing velocity of elite female water polo players. J. Strength. Cond. Res. 2015, 29, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Vila, M.H.; Manchado, C.; Abraldes, J.A.; Ferragut, C. Predicting playing status in professional water polo players: Analysis by gender. J. Sports Med. Phys. Fit. 2018, 58, 1234–1239. [Google Scholar] [CrossRef]
- Sekulic, D.; Kontic, D.; Esco, M.R.; Zenic, N.; Milanovic, Z.; Zvan, M. Sport-Specific Conditioning Variables Predict Offensive and Defensive Performance in High-Level Youth Water Polo Athletes. J. Strength. Cond. Res. 2016, 30, 1316–1324. [Google Scholar] [CrossRef]
- Melchiorri, G.; Viero, V.; Tancredi, V.; Bianco, R.D.; Bonifazi, M. Actual Playing Time of Water Polo Players in Relation to the Field Position. J. Hum. Kinet. 2020, 73, 241–249. [Google Scholar] [CrossRef]
- Melchiorri, G.; Triossi, T.; Bianchi, D.; Tancredi, V.; Viero, V. Physical Characteristics and Performance Tests in Male Water Polo: A Multiple Regression Analysis on Youth. Int. J. Environ. Res. Public Health 2022, 19, 8241. [Google Scholar] [CrossRef]
- Botonis, P.G.; Toubekis, A.G.; Platanou, T.I. Physiological and Tactical On-court Demands of Water Polo. J. Strength. Cond. Res. 2019, 33, 3188–3199. [Google Scholar] [CrossRef] [PubMed]
- Canossa, S.; Fernandes, R.J.; Estriga, L.; Abraldes, J.A.; Lupo, C.; Garganta, J.M. Water Polo Offensive Methods after the 2018 FINA Rules Update. Int. J. Environ. Res. Public Health 2022, 19, 2568. [Google Scholar] [CrossRef]
- Escalante, Y.; Saavedra, J.M.; Tella, V.; Mansilla, M.; García-Hermoso, A.; Dominguez, A.M. Water Polo Game-Related Statistics in Women’s International Championships: Differences and Discriminatory Power. J. Sports Sci. Med. 2012, 11, 475–482. [Google Scholar] [PubMed]
- Kondrič, M.; Uljević, O.; Gabrilo, G.; Kontić, D.; Sekulić, D. General anthropometric and specific physical fitness profile of high-level junior water polo players. J. Hum. Kinet. 2012, 32, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Lozovina, M.; Durović, N.; Katić, R. Position specific morphological characteristics of elite water polo players. Coll. Antropol. 2009, 33, 781–789. [Google Scholar]
- Melchiorri, G.; Viero, V.; Triossi, T.; Padua, E.; Bonifazi, M. Shuttle swimming test in young water polo players: Reliability, responsiveness and age-related value. J. Sports Med. Phys. Fit. 2017, 57, 1456–1463. [Google Scholar] [CrossRef]
- Kontic, D.; Zenic, N.; Uljevic, O.; Sekulic, D.; Lesnik, B. Evidencing the association between swimming capacities and performance indicators in water polo: A multiple regression study. J. Sports Med. Phys. Fit. 2017, 57, 734–743. [Google Scholar] [CrossRef]
- Kovačević, N.; Mihanović, F.; Hrbić, K.; Mirović, M.; Galić, T. Anthropometric Characteristics and Specific Functional Swimming Capacities in Youth U12 Water Polo Players. Montenegrin J. Sports Sci. Med. 2023, 12, 29. [Google Scholar] [CrossRef]
- Galy, O.; Ben Zoubir, S.; Hambli, M.; Chaouachi, A.; Hue, O.; Chamari, K. Relationships between heart rate and physiological parameters of performance in top-level water polo players. Biol. Sport. 2014, 31, 33–38. [Google Scholar] [CrossRef]
- Falk, B.; Lidor, R.; Lander, Y.; Lang, B. Talent identification and early development of elite water-polo players: A 2-year follow-up study. J. Sports Sci. 2004, 22, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, S.; Tursi, D.; Di Tore, P.A.; Raiola, G. Tactics-based water polo training. J. Human. Sport. Exerc. 2013, 8, 271–282. [Google Scholar] [CrossRef]
- Royal, K.A.; Farrow, D.; Mujika, I.; Halson, S.L.; Pyne, D.; Abernethy, B. The effects of fatigue on decision making and shooting skill performance in water polo players. J. Sports Sci. 2006, 24, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Melchiorri, G.; Castagna, C.; Sorge, R.; Bonifazi, M. Game activity and blood lactate in men’s elite water-polo players. J. Strength. Cond. Res. 2010, 24, 2647–2651. [Google Scholar] [CrossRef]
- Thibault, V.; Guillaume, M.; Berthelot, G.; Helou, N.E.; Schaal, K.; Quinquis, L.; Nassif, H.; Tafflet, M.; Escolano, S.; Hermine, O.; et al. Women and Men in Sport Performance: The Gender Gap has not Evolved since 1983. J Sports Sci Med. 2010, 9, 214–223. [Google Scholar]
- Noronha, F.; Canossa, S.; Vilas-Boas, J.P.; Afonso, J.; Castro, F.; Fernandes, R.J. Youth Water Polo Performance Determinants: The INEX Study. Int. J. Environ. Res. Public Health 2022, 19, 4938. [Google Scholar] [CrossRef]
- Fritz, P.; Fritz, R.; Mayer, L.; Németh, B.; Ressinka, J.; Ács, P.; Oláh, C. Hungarian male water polo players’ body composition can predict specific playing positions and highlight different nutritional needs for optimal sports performance. BMC Sports Sci. Med. Rehabil. 2022, 14, 165. [Google Scholar] [CrossRef]
- Botonis, P.G.; Toubekis, A.G.; Platanou, T.I. Evaluation of Physical Fitness in Water Polo Players According to Playing Level and Positional Role. Sports 2018, 6, 157. [Google Scholar] [CrossRef] [PubMed]
- Michalsik, L.B.; Madsen, K.; Aagaard, P. Match performance and physiological capacity of female elite team handball players. Int. J. Sports Med. 2014, 35, 595–607. [Google Scholar] [CrossRef]
- D’Auria, S.; Gabbett, T. A time-motion analysis of international women’s water polo match play. Int. J. Sports Physiol. Perform. 2008, 3, 305–319. [Google Scholar] [CrossRef]
- Ferragut, C.; Abraldes, J.; Vila, H.; Rodríguez, N.; Argudo, F.; Fernandes, R. Anthropometry and throwing velocity in elite water polo by specific playing positions. J. Human. Kinet. 2011, 27, 31–44. [Google Scholar] [CrossRef]
- Smith, H.K. Applied physiology of water polo. Sports Med. 1998, 26, 317–334. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.; Polglaze, T.; Dawson, B. Activity profiles and physical demands of elite women’s water polo match play. J. Sports Sci. 2009, 27, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Thacker, L.R.; Heuman, D.M.; Fuchs, M.; Sterling, R.K.; Sanyal, A.J.; Puri, P.; Siddiqui, M.S.; Stravitz, R.T.; Bouneva, I.; et al. The Stroop smartphone application is a short and valid method to screen for minimal hepatic encephalopathy. Hepatology 2013, 58, 1122–1132. [Google Scholar] [CrossRef]
- Scarpina, F.; Tagini, S. The Stroop Color and Word Test. Front. Psychol. 2017, 8, 557. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Heuman, D.M.; Sterling, R.K.; Sanyal, A.J.; Siddiqui, M.; Matherly, S.; Luketic, V.; Stravitz, R.T.; Fuchs, M.; Thacker, L.R.; et al. Validation of EncephalApp, Smartphone-Based Stroop Test, for the Diagnosis of Covert Hepatic Encephalopathy. Clin. Gastroenterol. Hepatol. 2015, 13, 1828–1835.e1821. [Google Scholar] [CrossRef]
- Solon-Júnior, L.J.F.; Luiz, V.d.S.N.; Vieira da Silva Neto, L.; Lima-Junior, D.D.; Costa, Y.P.; Klinger da Silva Oliveira, J.; Fiorese, L.; Fortes, L.D.S. “Encephalapp Stroop”: Validity and reliability of a smartphone app to measure cognitive performance in physically active subjects. Appl. Neuropsychol. Adult 2024, 1–6. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; Sage Publishing: Los Angeles, CA, USA, 2019. [Google Scholar]
- Formenti, D.; Duca, M.; Trecroci, A.; Ansaldi, L.; Bonfanti, L.; Alberti, G.; Iodice, P. Perceptual vision training in non-sport-specific context: Effect on performance skills and cognition in young females. Sci. Rep. 2019, 9, 18671. [Google Scholar] [CrossRef]
- Conejero Suarez, M.; Prado Serenini, A.L.; Fernandez-Echeverria, C.; Collado-Mateo, D.; Moreno Arroyo, M.P. The Effect of Decision Training, from a Cognitive Perspective, on Decision-Making in Volleyball: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 3268. [Google Scholar] [CrossRef]
- Scharfen, H.-E.; Memmert, D. Cognitive training in elite soccer players: Evidence of narrow, but not broad transfer to visual and executive function. Ger. J. Exerc. Sport. Res. 2021, 51, 135–145. [Google Scholar] [CrossRef]
- de Joode, T.; Tebbes, D.J.J.; Savelsbergh, G.J.P. Game Insight Skills as a Predictor of Talent for Youth Soccer Players. Front. Sports Act. Living 2020, 2, 609112. [Google Scholar] [CrossRef] [PubMed]
- Vestberg, T.; Reinebo, G.; Maurex, L.; Ingvar, M.; Petrovic, P. Core executive functions are associated with success in young elite soccer players. PLoS ONE 2017, 12, e0170845. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, T.; Sugasawa, S.; Matsuda, Y.; Mizuno, M. Relationship of tennis play to executive function in children and adolescents. Eur. J. Sport. Sci. 2017, 17, 1074–1083. [Google Scholar] [CrossRef]
- Alesi, M.; Bianco, A.; Padulo, J.; Vella, F.P.; Petrucci, M.; Paoli, A.; Palma, A.; Pepi, A. Motor and cognitive development: The role of karate. Muscles Ligaments Tendons J. 2014, 4, 114–120. [Google Scholar] [CrossRef]
- Mills, A.; Butt, J.; Maynard, I.; Harwood, C. Identifying factors perceived to influence the development of elite youth football academy players. J. Sports Sci. 2012, 30, 1593–1604. [Google Scholar] [CrossRef]
- Krawczyk, P.; Bodasinski, S.; Bodasinska, A.; Slupczynski, B. Level of psychomotor abilities in handball goalkeepers. Balt. J. Health Phys. Act. 2018, 10, 64–71. [Google Scholar] [CrossRef]
- Nuri, L.; Shadmehr, A.; Ghotbi, N.; Attarbashi Moghadam, B. Reaction time and anticipatory skill of athletes in open and closed skill-dominated sport. Eur. J. Sport Sci. 2013, 13, 431–436. [Google Scholar] [CrossRef]
- Lennartsson, J.; Lidstrom, N.; Lindberg, C. Game intelligence in team sports. PLoS ONE 2015, 10, e0125453. [Google Scholar] [CrossRef]
- van der Fels, I.M.; Te Wierike, S.C.; Hartman, E.; Elferink-Gemser, M.T.; Smith, J.; Visscher, C. The relationship between motor skills and cognitive skills in 4-16 year old typically developing children: A systematic review. J. Sci. Med. Sport. 2015, 18, 697–703. [Google Scholar] [CrossRef]
- Rigoli, D.; Piek, J.P.; Kane, R.; Oosterlaan, J. An examination of the relationship between motor coordination and executive functions in adolescents. Dev. Med. Child. Neurol. 2012, 54, 1025–1031. [Google Scholar] [CrossRef]
- Voelcker-Rehage, C.; Godde, B.; Staudinger, U.M. Physical and motor fitness are both related to cognition in old age. Eur. J. Neurosci. 2010, 31, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Huijgen, B.C.; Leemhuis, S.; Kok, N.M.; Verburgh, L.; Oosterlaan, J.; Elferink-Gemser, M.T.; Visscher, C. Cognitive Functions in Elite and Sub-Elite Youth Soccer Players Aged 13 to 17 Years. PLoS ONE 2015, 10, e0144580. [Google Scholar] [CrossRef]
- Verburgh, L.; Scherder, E.J.A.; van Lange, P.A.M.; Oosterlaan, J. Executive Functioning in Highly Talented Soccer Players. PLoS ONE 2014, 9, e91254. [Google Scholar] [CrossRef]
- Simons, D.J.; Boot, W.R.; Charness, N.; Gathercole, S.E.; Chabris, C.F.; Hambrick, D.Z.; Stine-Morrow, E.A. Do “Brain-Training” Programs Work? Psychol. Sci. Public Interest 2016, 17, 103–186. [Google Scholar] [CrossRef] [PubMed]
- Renshaw, I.; Davids, K.; Araujo, D.; Lucas, A.; Roberts, W.M.; Newcombe, D.J.; Franks, B. Evaluating Weaknesses of “Perceptual-Cognitive Training” and “Brain Training” Methods in Sport: An Ecological Dynamics Critique. Front. Psychol. 2018, 9, 2468. [Google Scholar] [CrossRef]
- Radic, V. Cognitive Training in Handball Goalkeeping. Available online: https://vanjaradic.fi/cognitive-training-in-handball-goalkeeping/ (accessed on 15 November 2024).
- Department, W.A.C. World Aquatics updates Competition Regulations. Available online: https://www.worldaquatics.com/news/4186172/world-aquatics-updates-competition-regulations-2025 (accessed on 27 December 2024).
- Huizinga, M.; Dolan, C.V.; van der Molen, M.W. Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia 2006, 44, 2017–2036. [Google Scholar] [CrossRef] [PubMed]
- Best, J.R.; Miller, P.H. A developmental perspective on executive function. Child. Dev. 2010, 81, 1641–1660. [Google Scholar] [CrossRef]
- Camarata, S.; Woodcock, R. Sex differences in processing speed: Developmental effects in males and females. Intelligence 2006, 34, 231–252. [Google Scholar] [CrossRef]
- Hyde, J.S. The gender similarities hypothesis. Am. Psychol. 2005, 60, 581–592. [Google Scholar] [CrossRef]
- Kovačević, N.; Mihanović, F.; Lušić Kalcina, L.; Matijaš, T.; Rukavina, I.; Galić, T. Gender Differences in Cognitive Functions of Youth Water Polo Players. Sport. Mont. 2024, 22, 79–85. [Google Scholar] [CrossRef]
Anthropometric Characteristics (N = 106) | ||
Mean ± SD | 95% CI | |
Age (years) | 14.15 ± 0.36 | 14.082–14.219 |
Body height (cm) | 176.65 ± 7.80 | 175.024–178.273 |
Body mass (kg) | 66.74 ± 11.21 | 64.407–69.077 |
Body mass index (kg/m2) | 21.30 ± 2.78 | 20.724–21.882 |
Specific swimming capacities | ||
Crawl, 25 m (s) N = 91 | 13.70 ± 0.74 | 13.533–13.871 |
Crawl, 50 m (s) N = 91 | 30.10 ± 1.81 | 29.722–30.477 |
Crawl, 100 m (s) N = 91 | 96.41 ± 32.23 | 84.589–108.233 |
Crawl, 400 m (s) N = 91 | 314.62 ± 13.12 | 311.804–317.431 |
Breaststroke, 100 m (s) N = 15 | 96.90 ± 3.55 | 93.616–100.179 |
Butterfly, 100 m (s) N = 15 | 93.41 ± 10.84 | 83.390–103.433 |
Dribbling, 25 m (s) N = 91 | 14.65 ± 0.93 | 14.453–14.842 |
Cognitive performance via the Stroop test (N = 106) | ||
StroopOff time (s) | 61.40 ± 9.40 | 59.589–63.210 |
StroopOn time (s) | 72.52 ± 14.97 | 69.634–75.399 |
StroopOff + StroopOn time (s) | 133.92 ± 23.66 | 129.358–138.473 |
Ontime minus Offtime (s) | 11.12 ± 8.06 | 9.566–12.669 |
Incorrect runs total time (StroopOff) (s) | 4.27 ± 6.39 | 3.042–5.504 |
Incorrect runs total time (StroopOn) (s) | 6.307 ± 8.979 | 4.577–8.036 |
Successful times × attempts (Off) (s) | 306.99 ± 47.01 | 297.94–316.05 |
Successful times × attempts (On) (s) | 362.58 ± 74.83 | 348.17–376.99 |
Playing Positions | Goalkeepers N = 15 | Center-Defenders N = 21 | Center-Forwards N = 17 | Drivers N = 34 | Wings N = 19 | p * |
---|---|---|---|---|---|---|
Anthropometric characteristics (N = 106) | ||||||
Age (years) | 14.20 ± 0.41 | 14.14 ± 0.36 | 14.06 ± 0.24 | 14.15 ± 0.36 | 14.21 ± 0.42 | 0.756 |
Body height (cm) | 180.93 ± 10.32 d | 178.03 ± 6.64 | 180.73 ± 5.98 d | 174.00 ± 6.34 | 171.83 ± 6.24 a,b | 0.001 * |
Body mass (kg) | 66.82 ± 12.69 | 68.46 ± 8.29 | 77.99 ± 9.91 c,d | 63.18 ± 9.87 b | 60.37 ± 8.16 b | <0.001 * |
Body mass index (kg/m2) | 20.24 ± 2.25 b | 21.55 ± 1.92 | 23.92 ± 3.31 a,c,d | 20.81 ± 2.60 b | 20.42 ± 2.44 b | 0.001 * |
Specific swimming capacities | ||||||
Crawl, 25 m (s) N = 91 | 13.64 ± 0.99 | 14.04 ± 0.69 | 13.69 ± 0.58 | 13.44 ± 0.70 | 0.160 | |
Crawl, 50 m (s) N = 91 | 30.20 ± 2.06 | 31.27 ± 1.68 c,d | 29.74 ± 1.28 b | 29.58 ± 2.09 b | 0.016 * | |
Crawl, 100 m (s) N = 91 | 66.92 ± 4.29 | 69.05 ± 2.80 | 66.89 ± 2.83 | 66.13 ± 3.09 | 0.104 | |
Crawl, 400 m (s) N = 175 | 312.25 ± 13.12 | 323.18 ± 14.67 c | 311.53 ± 11.98 b | 314.32 ± 10.84 | 0.020 * | |
Breaststroke, 100 m (s) N = 15 | 96.90 ± 3.55 | NA | ||||
Butterfly, 100 m (s) N = 15 | 93.41 ± 10.84 | NA | ||||
Dribbling, 25 m (s) N = 91 | 14.88 ± 1.13 | 14.76 ± 0.98 | 14.66 ± 0.74 | 14.28 ± 0.93 | 0.219 | |
Cognitive performance via the Stroop test (N = 106) | ||||||
StroopOff time (s) | 58.44 ± 6.99 | 62.68 ± 10.08 | 67.03 ± 9.72 d | 61.48 ± 8.15 | 57.14 ± 10.04 b | 0.016 * |
StroopOn time (s) | 66.81 ± 10.34 b | 71.50 ± 12.29 | 80.24 ± 15.64 a,d | 75.34 ± 15.57 | 66.18 ± 15.86 b | 0.019 * |
StroopOff + StroopOn time (s) | 125.26 ± 16.88 | 134.18 ± 21.80 | 147.27 ± 24.3 d | 136.81 ± 23.14 | 123.32 ± 25.38 b | 0.017 * |
Ontime minus Offtime (s) | 8.37 ± 5.13 b | 8.83 ± 5.47 | 13.21 ± 9.35 a,d | 13.86 ± 9.08 | 9.03 ± 7.79 b | 0.041 * |
Incorrect runs total time (StroopOff) (s) | 6.56 ± 8.43 | 4.97 ± 6.25 | 2.17 ± 6.90 | 5.05 ± 6.12 | 2.17 ± 3.72 | 0.159 |
Incorrect runs total time (StroopOn) (s) | 5.46 ± 11.71 | 3.42 ± 6.09 | 6.68 ± 9.14 | 9.51 ± 9.46 | 4.09 ± 7.01 | 0.095 |
Successful times × attempts (Off) (s) | 292.22 ± 34.93 | 313.38 ± 50.42 | 335.15 ± 48.59 d | 307.38 ± 40.75 | 285.71 ± 50.18 b | 0.016 * |
Successful times × attempts (On) (s) | 334.07 ± 51.69 | 357.52 ± 61.44 | 401.21 ± 78.22 d | 376.68 ± 77.86 | 330.89 ± 79.30 b | 0.019 * |
Mean | SE | 95% CI | F | p | ||
---|---|---|---|---|---|---|
StroopOff time | R2 = 0.102 R2 adjusted = 0.038 | 1.587 | 0.161 | |||
Goalkeeper (N= 15) | 58.61 | 2.32 | 54.010–63.202 | |||
Center-backward (N = 21) | 62.68 | 1.95 | 58.800–66.554 | |||
Center-forward (N = 17) | 66.63 | 2.20 | 62.263–70.994 | |||
Perimeter (N = 34) | 61.24 | 1.55 | 58.165–64.314 | |||
Wings (N = 18) | 58.59 | 2.19 | 54.229–62.944 | |||
StroopOn time | R2 = 0.127 R2 adjusted = 0.065 | 2.035 | 0.070 | |||
Goalkeeper (N = 15) | 67.005 | 3.730 | 59.603–74.406 | |||
Center-backward (N = 21) | 71.503 | 3.147 | 65.260–77.747 | |||
Center-forward (N = 17) | 79.768 | 3.543 | 72.738–86.798 | |||
Perimeter (N = 34) | 75.058 | 2.495 | 70.107–80.009 | |||
Wings (N = 18) | 67.822 | 3.537 | 60.804–74.840 | |||
StroopOff + StroopOn time | R2 = 0.115 R2 adjusted = 0.065 | 1.818 | 0.105 | |||
Goalkeeper (N = 15) | 125.610 | 5.864 | 113.976–137.245 | |||
Center-backward (N = 21) | 134.180 | 4.946 | 124,366–143.995 | |||
Center-forward (N = 17) | 146.396 | 5.570 | 135,345–157.448 | |||
Perimeter (N = 34) | 136.298 | 3.923 | 128.514–144.081 | |||
Wings (N = 18) | 126.408 | 5.560 | 115.376–137.441 | |||
StroopOn minus StroopOff time | R2 = 0.160 R2 adjusted = 0.100 | 2.674 | 0.020 | |||
Goalkeeper (N = 15) | 8.399 | 2.043 | 4.346–12.452 | |||
Center-backward (N = 21) | 8.827 | 1.723 | 5.408–12.246 | |||
Center-forward (N = 17) | 13.139 | 1.940 | 9.290–16.990 | |||
Perimeter (N = 34) | 13.818 | 1.367 | 11.107–16.530 | |||
Wings (N = 18) | 9.236 | 1.937 | 5.393–13.079 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovačević, N.; Mihanović, F.; Lušić Kalcina, L.; Matijaš, T.; Galić, T. Positional Differences in Youth Water Polo Players: Cognitive Functions, Specific Swimming Capacities and Anthropometric Characteristics. J. Funct. Morphol. Kinesiol. 2025, 10, 151. https://doi.org/10.3390/jfmk10020151
Kovačević N, Mihanović F, Lušić Kalcina L, Matijaš T, Galić T. Positional Differences in Youth Water Polo Players: Cognitive Functions, Specific Swimming Capacities and Anthropometric Characteristics. Journal of Functional Morphology and Kinesiology. 2025; 10(2):151. https://doi.org/10.3390/jfmk10020151
Chicago/Turabian StyleKovačević, Neven, Frane Mihanović, Linda Lušić Kalcina, Tatjana Matijaš, and Tea Galić. 2025. "Positional Differences in Youth Water Polo Players: Cognitive Functions, Specific Swimming Capacities and Anthropometric Characteristics" Journal of Functional Morphology and Kinesiology 10, no. 2: 151. https://doi.org/10.3390/jfmk10020151
APA StyleKovačević, N., Mihanović, F., Lušić Kalcina, L., Matijaš, T., & Galić, T. (2025). Positional Differences in Youth Water Polo Players: Cognitive Functions, Specific Swimming Capacities and Anthropometric Characteristics. Journal of Functional Morphology and Kinesiology, 10(2), 151. https://doi.org/10.3390/jfmk10020151