Manipulating Resistance Exercise Variables to Improve Jumps, Sprints, and Changes of Direction in Soccer: What We Know and What We Don’t Know
Abstract
:1. Introduction
2. Research Strategy
2.1. What We Know
2.1.1. External Load
2.1.2. Type of External Resistance
2.1.3. Movement Velocity
2.1.4. ROM
2.2. What We Do Not Know
2.2.1. Eccentric-Only vs. Concentric-Only vs. Traditional Eccentric–Concentric Training
2.2.2. External vs. Internal Focus
2.2.3. Sets to Failure/Non-Failure
2.2.4. Total Number of Repetitions (Volume)
2.2.5. Inter-Set Rest
2.2.6. Exercise Selection
3. Limitations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Silva, J.R.; Nassis, G.P.; Rebelo, A. Strength training in soccer with a specific focus on highly trained players. Sports Med. Open 2015, 1, 17. [Google Scholar] [CrossRef]
- Oliver, J.L.; Ramachandran, A.K.; Singh, U.; Ramirez-Campillo, R.; Lloyd, R. The Effects of Strength, Plyometric and Combined Training on Strength, Power and Speed Characteristics in High-Level, Highly Trained Male Youth Soccer Players: A Systematic Review and Meta-Analysis. Sports Med. 2024, 54, 623–643. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.; Bishop, C.; Turner, A.; Haff, G. Optimal Training Sequences to Develop Lower Body Force, Velocity, Power, and Jump Height: A Systematic Review with Meta-Analysis. Sports Med. 2021, 51, 1245–1271. [Google Scholar] [CrossRef]
- Murphy, A.; Burgess, K.; Hall, A.J.; Aspe, R.R.; Swinton, P. The Effects of Strength and Conditioning Interventions on Sprinting Performance in Team Sport Athletes: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2023, 37, 1692–1702. [Google Scholar] [CrossRef] [PubMed]
- Brughelli, M.; Cronin, J.; Levin, G.; Chaouachi, A. Understanding change of direction ability in sport: A review of resistance training studies. Sports Med. 2008, 38, 1045–1063. [Google Scholar] [CrossRef] [PubMed]
- Nygaard Falch, H.; Guldteig Rædergård, H.; van den Tillaar, R. Effect of Different Physical Training Forms on Change of Direction Ability: A Systematic Review and Meta-analysis. Sports Med. Open 2019, 5, 53. [Google Scholar] [CrossRef]
- Chaabene, H.; Prieske, O.; Moran, J.; Negra, Y.; Attia, A.; Granacher, U. Effects of Resistance Training on Change-of-Direction Speed in Youth and Young Physically Active and Athletic Adults: A Systematic Review with Meta-Analysis. Sports Med. 2020, 50, 1483–1499. [Google Scholar] [CrossRef]
- Ferrete, C.; Requena, B.; Suarez-Arrones, L.; de Villarreal, E.S. Effect of strength and high-intensity training on jumping, sprinting, and intermittent endurance performance in prepubertal soccer players. Journal of strength and conditioning research. Natl. Strength Cond. Assoc. 2014, 28, 413–422. [Google Scholar] [CrossRef]
- Coratella, G.; Beato, M.; Schena, F. The specificity of the Loughborough Intermittent Shuttle Test for recreational soccer players is independent of their intermittent running ability. Res. Sports Med. 2016, 24, 363–374. [Google Scholar] [CrossRef]
- Comfort, P.; Stewart, A.; Bloom, L.; Clarkson, B. Relationship between strength, sprint and jump performance in well trained youth soccer players. J. Strength Cond. Res. 2014, 28, 173–177. [Google Scholar] [CrossRef]
- de Villarreal, E.S.; Requena, B.; Cronin, J.B. The effects of plyometric training on sprint performance: A meta-analysis. J. Strength Cond. Res. 2012, 26, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Markovic, G. Does plyometric training improve vertical jump height? A meta-analytical review. Br. J. Sports Med. 2007, 41, 349–355, discussion 355. [Google Scholar] [CrossRef]
- Asadi, A.; Arazi, H.; Young, W.B.; de Villarreal, E.S. The Effects of Plyometric Training on Change-of-Direction Ability: A Meta-Analysis. Int. J. Sports Physiol. Perform. 2016, 11, 563–573. [Google Scholar] [CrossRef]
- Stojanovic, E.; Ristic, V.; McMaster, D.T.; Milanovic, Z. Effect of Plyometric Training on Vertical Jump Performance in Female Athletes: A Systematic Review and Meta-Analysis. Sports Med. 2016, 47, 975–986. [Google Scholar] [CrossRef] [PubMed]
- Coratella, G. Appropriate reporting of exercise variables in resistance training protocols: Much more than load and number of repetitions. Sports Med. Open 2022, 8, 99. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Chueh, T.-Y.; Hung, T.-M. Preferred Reporting Items for Resistance Exercise Studies (PRIRES): A Checklist Developed Using an Umbrella Review of Systematic Reviews. Sports Med. Open 2023, 9, 114. [Google Scholar] [CrossRef]
- Fuentes-García, M.A.; Malchrowicz-Mośko, E.; Castañeda-Babarro, A. Effects of variable resistance training versus conventional resistance training on muscle hypertrophy: A systematic review. Sport Sci. Health 2024, 20, 37–45. [Google Scholar] [CrossRef]
- Cormier, P.; Freitas, T.T.; Seaman, K. A systematic review of resistance training methodologies for the development of lower body concentric mean power, peak power, and mean propulsive power in team-sport athletes. Sports Biomech. 2024, 23, 1229–1262. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Grgic, J.; Ogborn, D.; Krieger, J.W. Strength and hypertrophy adaptations between low- vs. High-load resistance training: A systematic review and meta-analysis. J. Strength Cond. Res. 2017, 31, 3508–3523. [Google Scholar] [CrossRef]
- Grgic, J.; Schoenfeld, B.J. Are the hypertrophic adaptations to high and low-load resistance training muscle fiber type specific? Front. Physiol. 2018, 9, 402. [Google Scholar] [CrossRef]
- Mcquilliam, S.J.; Clark, D.R.; Erskine, R.M.; Brownlee, T.E. Effect of High-Intensity vs. Moderate-Intensity Resistance Training on Strength, Power, and Muscle Soreness in Male Academy Soccer Players. J. Strength Cond. Res. 2023, 37, 1250–1258. [Google Scholar] [CrossRef] [PubMed]
- Bogdanis, G.C.; Papaspyrou, A.; Souglis, A.G.; Theos, A.; Sotiropoulos, A.; Maridaki, M. Effects of hypertrofhy and a maximal strength training programme on speed, force and power of soccer players. In Proceedings of the VI World Congress on Science and Football, Antalya, Turkey, 1–3 November 2009; pp. 290–295. [Google Scholar]
- Falces-Prieto, M.; Sáez de Villarreal-Sáez, E.; Raya-González, J.; González-Fernández, F.T.; Clemente, F.M.; Badicu, G.; Murawska-Ciałowicz, E. The Differentiate Effects of Resistance Training With or Without External Load on Young Soccer Players’ Performance and Body Composition. Front. Physiol. 2021, 12, 771684. [Google Scholar] [CrossRef] [PubMed]
- Coratella, G.; Beato, M.; Milanese, C.; Longo, S.; Limonta, E.; Rampichini, S.; Cè, E.; Bisconti, A.V.; Schena, F.; Esposito, F. Specific Adaptations in Performance and Muscle Architecture After Weighted Jump-Squat vs Body Mass Squat Jump Training in Recreational Soccer Players. J. Strength Cond. Res. 2018, 32, 921–929. [Google Scholar] [CrossRef]
- Nuñez, J.; Suarez-Arrones, L.; De Hoyo, M.; Loturco, I. Strength Training in Professional Soccer: Effects on Short-sprint and Jump Performance. Int. J. Sports Med. 2022, 43, 485–495. [Google Scholar] [CrossRef]
- Carvalho, L.; Junior, R.M.; Barreira, J.; Schoenfeld, B.J.; Orazem, J.; Barroso, R. Muscle hypertrophy and strength gains after resistance training with different volume-matched loads: A systematic review and meta-analysis. Appl. Physiol. Nutr. Metab. 2022, 47, 357–368. [Google Scholar] [CrossRef]
- Beato, M.; De Keijzer, K.L.; Muñoz-Lopez, A.; Raya-González, J.; Pozzo, M.; Alkner, B.A.; Dello Iacono, A.; Vicens-Bordas, J.; Coratella, G.; Maroto-Izquierdo, S.; et al. Current Guidelines for the Implementation of Flywheel Resistance Training Technology in Sports: A Consensus Statement. Sports Med. 2024, 54, 541–556. [Google Scholar] [CrossRef]
- Nuzzo, J.L.; Pinto, M.D.; Nosaka, K.; Steele, J. The Eccentric:Concentric Strength Ratio of Human Skeletal Muscle In Vivo: Meta-analysis of the Influences of Sex, Age, Joint Action, and Velocity. Sports Med. 2023, 53, 1125–1136. [Google Scholar] [CrossRef] [PubMed]
- Chaabene, H.; Prieske, O.; Negra, Y.; Granacher, U. Change of Direction Speed: Toward a Strength Training Approach with Accentuated Eccentric Muscle Actions. Sports Med. 2018, 48, 1773–1779. [Google Scholar] [CrossRef]
- Allen, W.J.C.; de Keijzer, K.L.; Raya-González, J.; Castillo, D.; Coratella, G.; Beato, M. Chronic effects of flywheel training on physical capacities in soccer players: A systematic review. Res. Sports Med. 2023, 31, 228–248. [Google Scholar] [CrossRef]
- de Keijzer, K.L.; Gonzalez, J.R.; Beato, M. The effect of flywheel training on strength and physical capacities in sporting and healthy populations: An umbrella review. PLoS ONE 2022, 17, e0264375. [Google Scholar] [CrossRef]
- Coratella, G.; Beato, M.; Cè, E.; Scurati, R.; Milanese, C.; Schena, F.; Esposito, F. Effects of in-season enhanced negative work-based vs traditional weight training on change of direction and hamstrings-to-quadriceps ratio in soccer players. Biol. Sport 2019, 36, 241–248. [Google Scholar] [CrossRef]
- Jarosz, J.; Królikowska, P.; Matykiewicz, P.; Aschenbrenner, P.; Ewertowska, P.; Krzysztofik, M. Effects of Flywheel vs. Free-Weight Squats and Split Squats on Jumping Performance and Change of Direction Speed in Soccer Players. Sports 2023, 11, 124. [Google Scholar] [CrossRef] [PubMed]
- Sagelv, E.H.; Pedersen, S.; Nilsen, L.P.R.; Casolo, A.; Welde, B.; Randers, M.; Pettersen, S. Flywheel squats versus free weight high load squats for improving high velocity movements in football. A randomized controlled trial. BMC Sports Sci. Med. Rehabil. 2020, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Liu, J.; Clarke, C.V.; An, R. Effect of eccentric overload training on change of direction speed performance: A systematic review and meta-analysis. J. Sports Sci. 2020, 38, 2579–2587. [Google Scholar] [CrossRef]
- Coratella, G.; Chemello, A.; Schena, F. Muscle damage and repeated bout effect induced by enhanced eccentric squats. J. Sports Med. Phys. Fit. 2016, 56, 1540–1546. [Google Scholar]
- Lin, Y.; Xu, Y.; Hong, F.; Li, J.; Ye, W.; Korivi, M. Effects of Variable-Resistance Training Versus Constant-Resistance Training on Maximum Strength: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 8559. [Google Scholar] [CrossRef] [PubMed]
- Katushabe, E.T.; Kramer, M. Effects of combined power band resistance training on sprint speed, agility, vertical jump height, and strength in collegiate soccer players. Int. J. Exerc. Sci. 2020, 13, 950–963. [Google Scholar]
- Loturco, I.; Pereira, L.A.; Reis, V.P.; Zanetti, V.; Bishop, C.; McGuigan, M. Traditional Free-Weight Vs. Variable Resistance Training Applied to Elite Young Soccer Players During a Short Preseason: Effects on Strength, Speed, and Power Performance. J. Strength Cond. Res. 2022, 36, 3432–3439. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Wilson, C.J.; Alcaraz, P.E.; Rubio-Arias, J.A. Effects of Resistance Training Movement Pattern and Velocity on Isometric Muscular Rate of Force Development: A Systematic Review with Meta-analysis and Meta-regression. Sports Med. 2020, 50, 943–963. [Google Scholar] [CrossRef]
- Shibata, K.; Takizawa, K.; Nosaka, K.; Mizuno, M. Effects of prolonging eccentric phase duration in parallel back-squat training to momentary failure on muscle cross-sectional area, squat one-repetition maximum, and performance tests in university soccer players. J. Strength Cond. Res. 2021, 35, 668–674. [Google Scholar] [CrossRef]
- Segers, N.; Waldron, M.; Howe, L.P.; Patterson, S.D.; Moran, J.; Kidgell, D.; Tallent, J. Slow-Speed Compared with Fast-Speed Eccentric Muscle Actions Are Detrimental to Jump Performance in Elite Soccer Players In-Season. Int. J. Sports Physiol. Perform. 2022, 17, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
- González-Badillo, J.J.; Sánchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Feng, S.; Su, S. The effect of velocity-based training variables on muscle strength: Dose-response meta-analysis. Int. J. Sports Med. 2023, 44, 857–864. [Google Scholar] [CrossRef]
- Baena-Marín, M.; Rojas-Jaramillo, A.; González-Santamaría, J.; Rodríguez-Rosell, D.; Petro, J.L.; Kreider, R.B.; Bonilla, D. Velocity-Based Resistance Training on 1-RM, Jump and Sprint Performance: A Systematic Review of Clinical Trials. Sports 2022, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Włodarczyk, M.; Adamus, P.; Zieliński, J.; Kantanista, A. Effects of velocity-based training on strength and power in elite athletes—A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 5257. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Feng, S.; Peng, R.; Li, H. The Role of Velocity-Based Training (VBT) in Enhancing Athletic Performance in Trained Individuals: A Meta-Analysis of Controlled Trials. Int. J. Environ. Res. Public Health 2022, 19, 9252. [Google Scholar] [CrossRef]
- Orange, S.T.; Hritz, A.; Pearson, L.; Jeffries, O.; Jones, T.W.; Steele, J. Comparison of the effects of velocity-based training vs. traditional resistance training methods on adaptations in strength, power and sprint speed: A systematic review, meta-analysis and quality of evidence appraisal. J. Sports Sci. 2022, 40, 1220–1234. [Google Scholar] [CrossRef]
- Held, S.; Speer, K.; Rappelt, L.; Wicker, P.; Donath, L. The effectiveness of traditional vs. velocity-based strength training on explosive and maximal strength performance: A network meta-analysis. Front. Physiol. 2022, 13, 926972. [Google Scholar] [CrossRef]
- Liao, K.F.; Wang, X.X.; Han, M.Y.; Li, L.L.; Nassis, G.P.; Li, Y.M. Effects of velocity-based training vs. traditional 1RM percentage-based training on improving strength, jump, linear sprint and change of direction speed performance: A Systematic review with meta-analysis. PLoS ONE 2021, 16, e0259790. [Google Scholar] [CrossRef]
- Young, W.; Benton, D.; Duthie, G.M.; Pryor, J.F. Resistance training for short sprints and maximum-speed sprints. Strength Cond. J. 2001, 23, 7–13. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Cava, A.M.; Courel-Ibáñez, J.; González-Badillo, J.J.; Morán-Navarro, R. Full squat produces greater neuromuscular and functional adaptations and lower pain than partial squats after prolonged resistance training. Eur. J. Sport Sci. 2020, 20, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Bloomquist, K.; Langberg, H.; Karlsen, S.; Madsgaard, S.; Boesen, M.; Raastad, T. Effect of range of motion in heavy load squatting on muscle and tendon adaptations. Eur. J. Appl. Physiol. 2013, 113, 2133–2142. [Google Scholar] [CrossRef]
- Hartmann, H.; Wirth, K.; Klusemann, M.; Dalic, J.; Matuschek, C.; Schmidtbleicher, D. Influence of squatting depth on jumping performance. J. Strength Cond. Res. 2012, 26, 3243–3261. [Google Scholar] [CrossRef] [PubMed]
- Coratella, G.; Schena, F. Eccentric resistance training increases and retains maximal strength, muscle endurance, and hypertrophy in trained men. Appl. Physiol. Nutr. Metab. 2016, 41, 1184–1189. [Google Scholar] [CrossRef]
- Coratella, G.; Beato, M.; Bertinato, L.; Milanese, C.; Venturelli, M.; Schena, F. Including the Eccentric Phase in Resistance Training to Counteract the Effects of Detraining in Women: A Randomized Controlled Trial. J. Strength Cond. Res. 2022, 36, 3023–3031. [Google Scholar] [CrossRef]
- Sato, S.; Yoshida, R.; Murakoshi, F.; Sasaki, Y.; Yahata, K.; Kasahara, K.; Nunes, J.P.; Nosaka, K.; Nakamura, M. Comparison between concentric-only, eccentric-only, and concentric–eccentric resistance training of the elbow flexors for their effects on muscle strength and hypertrophy. Eur. J. Appl. Physiol. 2022, 122, 2607–2614. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, K.; Newton, R.U.; Walker, S.; Häkkinen, A.; Krapi, S.; Rekola, R.; Koponen, P.; Kraemer, W.J.; Haff, G.G.; Blazevich, A.J.; et al. Effects of Upper Body Eccentric versus Concentric Strength Training and Detraining on Maximal Force, Muscle Activation, Hypertrophy and Serum Hormones in Women. J. Sports Sci. Med. 2022, 21, 200–213. [Google Scholar] [CrossRef]
- Coratella, G.; Galas, A.; Campa, F.; Pedrinolla, A.; Schena, F.; Venturelli, M. The Eccentric Phase in Unilateral Resistance Training Enhances and Preserves the Contralateral Knee Extensors Strength Gains After Detraining in Women: A Randomized Controlled Trial. Front. Physiol. 2022, 13, 788473. [Google Scholar] [CrossRef]
- Hortobágyi, T.; Lambert, N.J.; Hill, J.P. Greater cross education following training with muscle lengthening than shortening. Med. Sci. Sports Exerc. 1997, 29, 107–112. [Google Scholar] [CrossRef]
- Altheyab, A.; Alqurashi, H.; England, T.J.; Philips, B.E.; Piasecki, M. Cross-education of lower limb muscle strength following resistance exercise training in males and females: A systematic review and meta-analysis. Exp. Physiol. 2024. [Google Scholar] [CrossRef]
- Brughelli, M.; Cronin, J. Altering the length-tension relationship with eccentric exercise: Implications for performance and injury. Sports Med. 2007, 37, 807–826. [Google Scholar] [CrossRef] [PubMed]
- van der Horst, N.; Smits, D.-W.; Petersen, J.; Goedhart, E.A.; Backx, F.J.G. The Preventive Effect of the Nordic Hamstring Exercise on Hamstring Injuries in Amateur Soccer Players. Am. J. Sports Med. 2015, 43, 1316–1323. [Google Scholar] [CrossRef]
- Bright, T.E.; Handford, M.J.; Mundy, P.; Lake, J.; Theis, N.; Hughes, J.D. Building for the Future: A Systematic Review of the Effects of Eccentric Resistance Training on Measures of Physical Performance in Youth Athletes. Sports Med. 2023, 53, 1219–1254. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuang, Y.; Zhang, L.; Sun, M. The impact of eccentric training on athlete movement speed: A systematic review. Front. Physiol. 2024, 15, 1492023. [Google Scholar] [CrossRef]
- Coratella, G.; Bertinato, L. Isoload vs isokinetic eccentric exercise: A direct comparison of exercise-induced muscle damage and repeated bout effect. Sport Sci. Health 2015, 11, 87–96. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Hubal, M.J. Exercise-induced muscle damage in humans. American journal of physical medicine & rehabilitation. Assoc. Acad. Physiatr. 2002, 81, S52–S69. [Google Scholar] [CrossRef]
- Peake, J.M.; Neubauer, O.; Gatta, P.A.D.; Nosaka, K. Muscle damage and inflammation during recovery from exercise. J. Appl. Physiol. 2017, 122, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Chapman, D.; Newton, M.; Sacco, P.; Nosaka, K. Greater muscle damage induced by fast versus slow velocity eccentric exercise. Int. J. Sports Med. 2006, 27, 591–598. [Google Scholar] [CrossRef]
- Nosaka, K.; Newton, M. Is recovery from muscle damage retarded by a subsequent bout of eccentric exercise inducing larger decreases in force? J. Sci. Med. Sport/Sports Med. Aust. 2002, 5, 204–218. [Google Scholar] [CrossRef]
- Chen, T.C.; Nosaka, K. Effects of number of eccentric muscle actions on first and second bouts of eccentric exercise of the elbow flexors. J. Sci. Med. Sport 2006, 9, 57–66. [Google Scholar] [CrossRef]
- Wulf, G. Attentional focus and motor learning: A review of 15 years. Int. Rev. Sport Exerc. Psychol. 2013, 6, 77–104. [Google Scholar] [CrossRef]
- Neumann, D.L. A Systematic Review of Attentional Focus Strategies in Weightlifting. Front. Sports Act Living 2019, 1, 7. [Google Scholar] [CrossRef] [PubMed]
- Coratella, G.; Tornatore, G.; Longo, S.; Borrelli, M.; Doria, C.; Esposito, F.; Cè, E. The Effects of Verbal Instructions on Lower Limb Muscles’ Excitation in Back-Squat. Res. Q. Exerc. Sport 2022, 93, 429–435. [Google Scholar] [CrossRef]
- Calatayud, J.; Vinstrup, J.; Due, M. Importance of mind—muscle connection during progressive resistance training. Eur. J. Appl. Physiol. 2016, 116, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, J.; Vinstrup, J.; Jakobsen, M.D.; Sundstrup, E. Mind—Muscle connection training principle: Influence of muscle strength and training experience during a pushing movement. Eur. J. Appl. Physiol. 2017, 117, 1445–1452. [Google Scholar] [CrossRef] [PubMed]
- Paoli, A.; Mancin, L.; Saoncella, M.; Grigoletto, D.; Pacelli, F.Q.; Zamparo, P.; Schoenfeld, B.J.; Marcolin, G. Mind-muscle connection: Effects of verbal instructions on muscle activity during bench press exercise. Eur. J. Transl. Myol. 2019, 29, 106–111. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Vigotsky, A.; Contreras, B.; Golden, S.; Alto, A.; Larson, R.; Winkelman, N.; Paoli, A. Differential effects of attentional focus strategies during long-term resistance training. Eur. J. Sport Sci. 2018, 18, 705–712. [Google Scholar] [CrossRef]
- Halperin, I.; Vigotsky, A.D. The mind–muscle connection in resistance training: Friend or foe? Eur. J. Appl. Physiol. 2016, 116, 863–864. [Google Scholar] [CrossRef]
- Marchant, D.C.; Greig, M.; Scott, C. Attentional focusing instructions influence force production and muscular activity during isokinetic elbow flexions. J. Strength Cond. Res. 2009, 23, 2358–2366. [Google Scholar] [CrossRef]
- Marchant, D.C.; Greig, M. Attentional focusing instructions influence quadriceps activity characteristics but not force production during isokinetic knee extensions. Hum. Mov. Sci. 2017, 52, 67–73. [Google Scholar] [CrossRef]
- Vieira, A.F.; Umpierre, D.; Teodoro, J.L.; Lisboa, S.C.; Baroni, B.M.; Izquierdo, M.; Cadore, E.L. Effects of Resistance Training Performed to Failure or Not to Failure on Muscle Strength, Hypertrophy, and Power Output: A Systematic Review with Meta-Analysis. J. Strength Cond. Res. 2021, 35, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Schoenfeld, B.J.; Orazem, J.; Sabol, F. Effects of resistance training performed to repetition failure or non-failure on muscular strength and hypertrophy: A systematic review and meta-analysis. J. Sport Health Sci. 2021, 11, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Arede, J.; Vaz, R.; Gonzalo-Skok, O.; Balsalobre-Fernandéz, C.; Varela-Olalla, D.; Madruga-Parera, M.; Leite, N. Repetitions in reserve vs. maximum effort resistance training programs in youth female athletes. J. Sports Med. Phys. Fit. 2020, 60, 1231–1239. [Google Scholar] [CrossRef]
- Carroll, K.M.; Bernards, J.R.; Bazyler, C.D.; Taber, C.B.; Stuart, C.A.; Deweese, B.H.; Sato, K.; Stone, M.H. Divergent Performance Outcomes Following Resistance Training Using Repetition Maximums or Relative Intensity. Int. J. Sports Physiol. Perform. 2019, 14, 46–54. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Sánchez-Medina, L.; Suárez-Arrones, L.; González-Badillo, J.J. Effects of velocity loss during resistance training on performance in professional soccer players. Int. J. Sports Physiol. Perform. 2017, 12, 512–519. [Google Scholar] [CrossRef]
- Jukic, I.; Castilla, A.P.; Ramos, A.G.; Van Hooren, B.; McGuigan, M.R.; Helms, E.R. The Acute and Chronic Effects of Implementing Velocity Loss Thresholds During Resistance Training: A Systematic Review, Meta-Analysis, and Critical Evaluation of the Literature. Sports Med. 2023, 53, 177–214. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Grgic, J. Does Training to Failure Maximize Muscle Hypertrophy? Natl. Strength Cond. Assoc. 2019, 41, 108–113. [Google Scholar] [CrossRef]
- Fonseca, F.S.; Costa BDde, V.; Ferreira, M.E.C.; Paes, S.; de Lima-Junior, D.; Kassiano, W.; Cyrino, E.S.; Gantois, P.; Fortes, L.S. Acute effects of equated volume-load resistance training leading to muscular failure versus non-failure on neuromuscular performance. J. Exerc. Sci. Fit. 2020, 18, 94–100. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Ogborn, D.; Krieger, J.W. Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. J. Sports Sci. 2017, 35, 1073–1082. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Contreras, B.; Krieger, J.; Grgic, J.; Delcastillo, K.; Belliard, R.; Alto, A. Resistance Training Volume Enhances Muscle Hypertrophy but Not Strength in Trained Men. Med. Sci. Sports Exerc. 2019, 51, 94–103. [Google Scholar] [CrossRef]
- Androulakis-Korakakis, P.; Fisher, J.P.; Steele, J. The Minimum Effective Training Dose Required to Increase 1RM Strength in Resistance-Trained Men: A Systematic Review and Meta-Analysis. Sports Med. 2020, 50, 751–765. [Google Scholar] [CrossRef]
- Grgic, J.; Schoenfeld, B.J.; Davies, T.B.; Lazinica, B.; Krieger, J.W.; Pedisic, Z. Effect of Resistance Training Frequency on Gains in Muscular Strength: A Systematic Review and Meta-Analysis. Sports Med. 2018, 48, 1207–1220. [Google Scholar] [CrossRef]
- Lesinski, M.; Prieske, O.; Granacher, U. Effects and dose-response relationships of resistance training on physical performance in youth athletes: A systematic review and meta-analysis. Br. J. Sports Med. 2016, 50, 781–795. [Google Scholar] [CrossRef] [PubMed]
- Otero-Esquina, C.; de Hoyo Lora, M.; Gonzalo-Skok, Ó.; Domínguez-Cobo, S.; Sánchez, H. Is strength-training frequency a key factor to develop performance adaptations in young elite soccer players? Eur. J. Sport Sci. 2017, 17, 1241–1251. [Google Scholar] [CrossRef]
- Latella, C.; Grgic, J.; Van Der Westhuizen, D. Effect of interset strategies on acute resistance training performance and physiological responses: A systematic review. J. Strength Cond. Res. 2019, 33, S180–S193. [Google Scholar] [CrossRef]
- Grgic, J.; Schoenfeld, B.J.; Skrepnik, M.; Davies, T.B.; Mikulic, P. Effects of Rest Interval Duration in Resistance Training on Measures of Muscular Strength: A Systematic Review. Sports Med. 2018, 48, 137–151. [Google Scholar] [CrossRef] [PubMed]
- D’Emanuele, S.; Maffiuletti, N.A.; Tarperi, C.; Rainoldi, A.; Schena, F.; Boccia, G. Rate of Force Development as an Indicator of Neuromuscular Fatigue: A Scoping Review. Front. Hum. Neurosci. 2021, 15, 701916. [Google Scholar] [CrossRef] [PubMed]
- Neto, W.K.; Vieira, T.L.; Gama, E.F. Barbell hip thrust, muscular activation and performance: A systematic review. J. Sports Sci. Med. 2019, 18, 198–206. [Google Scholar]
- Contreras, B.; Vigotsky, A.D.; Schoenfeld, B.J.; Beardsley, C.; McMaster, D.T.; Reyneke, J.H.T.; Cronin, J.B. Effects of a Six-Week Hip Thrust vs. Front Squat Resistance Training Program on Performance in Adolescent Males: A Randomized Controlled Trial. J. Strength Cond. Res. 2017, 31, 999–1008. [Google Scholar] [CrossRef]
- González-García, J.; Morencos, E.; Balsalobre-Fernández, C.; Cuéllar-Rayo, A.; Romero-Moraleda, B. Effects of 7-week hip thrust versus back squat resistance training on performance in adolescent female soccer players. Sports 2019, 7, 80. [Google Scholar] [CrossRef]
- Beato, M.; Bianchi, M.; Coratella, G.; Merlini, M.; Drust, B. Effects of plyometric and directional training on speed and jump performance in elite youth soccer players. J. Strength Cond. Res. 2018, 32, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Berryman, N.; Mujika, I.; Bosquet, L. Concurrent training for sports performance: The 2 sides of the medal. Int. J. Sports Physiol. Perform. 2019, 14, 279–285. [Google Scholar] [CrossRef] [PubMed]
Influence of Resistance Training Variables on Jumps, Sprints and Changes of Direction (CODs) | ||
---|---|---|
Resistance Training Variable | What Is Known | What Is Not Known |
Magnitude external load | Moderate-to-high > low loads | Short-term recovery should be considered after high vs low loads |
Type external resistance | Flywheel and constant external loads are equally effective for jumps and sprints. Flywheel is possibly better than constant load for CODs. | Elastic training as an alternative method for sprints and CODs. |
Movement velocity | Movement velocity does not affect gains in jumps, sprints, and CODs. | Over-slowing movement velocity (>4 s per phase) should be avoided, although not completely proven. |
Range of motion (ROM) | Full > partial ROM for jumps. | No sufficient information for ROM and sprints and CODs. |
Eccentric vs. concentric vs. traditional eccentric/concentric training | Eccentric training is effective in improving jumps, sprints, and CODs. Eccentric training requires long initial recovery. | No direct comparison, so it is not clear if one methodology is more, less, or equally effective. |
External internal focus | External focus should equalize or increase strength during a movement. External focus suggested for complex tasks. | No direct long-term comparison, albeit external focus has more favorable theoretical bases. |
Failure/Non-failure | Velocity loss thresholds > 15% to improve jumps and sprints. | Few information indicates non-failure > failure. No information about velocity loss thresholds and CODs. |
Total number of repetitions (N) | A wide range of N could be selected to improve jumps, sprints, and CODs. Higher N is needed to improve CODs than jumps and sprints in young athletes. | N may not affect COD in adults. No information about the effects of N of jumps and sprints in adults. |
Inter-set rest | Longer durations may be suggested since it is more effective for increasing strength. | No direct comparison between longer/shorter durations available. |
Exercise selection | Squat variations, hip thrusts, and deadlift improve sprints equally. | No exercise superiority can be claimed. No information for jumps and COD. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartolomei, S.; Beato, M.; Coratella, G. Manipulating Resistance Exercise Variables to Improve Jumps, Sprints, and Changes of Direction in Soccer: What We Know and What We Don’t Know. J. Funct. Morphol. Kinesiol. 2025, 10, 145. https://doi.org/10.3390/jfmk10020145
Bartolomei S, Beato M, Coratella G. Manipulating Resistance Exercise Variables to Improve Jumps, Sprints, and Changes of Direction in Soccer: What We Know and What We Don’t Know. Journal of Functional Morphology and Kinesiology. 2025; 10(2):145. https://doi.org/10.3390/jfmk10020145
Chicago/Turabian StyleBartolomei, Sandro, Marco Beato, and Giuseppe Coratella. 2025. "Manipulating Resistance Exercise Variables to Improve Jumps, Sprints, and Changes of Direction in Soccer: What We Know and What We Don’t Know" Journal of Functional Morphology and Kinesiology 10, no. 2: 145. https://doi.org/10.3390/jfmk10020145
APA StyleBartolomei, S., Beato, M., & Coratella, G. (2025). Manipulating Resistance Exercise Variables to Improve Jumps, Sprints, and Changes of Direction in Soccer: What We Know and What We Don’t Know. Journal of Functional Morphology and Kinesiology, 10(2), 145. https://doi.org/10.3390/jfmk10020145