Investigating Persistent Sympathovagal Dysregulation Following a Complex Dual Task in Concussed Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Questionnaires and Instruments
2.2.1. Questionnaires
- Beck Anxiety Inventory (BAI) (BAI-16; Pearson assessment, Toronto, ON, Canada): assesses the severity of anxiety symptoms experienced over the past week.
- Beck Depression Inventory-II (BDI-II) (BDI-II-19; Pearson assessment, Toronto, ON, Canada): evaluates the presence and intensity of depressive symptoms over the past two weeks.
- Wender Utah Rating Scale (WURS) (WURS-48; Salt Lake City, UT, USA): retrospectively screens for childhood symptoms of attention-deficit/hyperactivity disorder (ADHD).
2.2.2. Curve Trainer Woodway Treadmill
2.2.3. Switch Task Color-Shape
- Homogeneous Color Phase: Participants responded to stimuli based solely on color, disregarding shape. Sixty stimuli were presented to the participants and lasted about 126 s.
- Homogeneous Shape Phase: Participants responded based on shape, ignoring color. Sixty stimuli were presented to the participants and lasted approximately 126 s.
- Heterogeneous Phase: Participants alternated between color and shape rules depending on the stimulus outline—solid outlines indicated the color rule, while dotted outlines signaled the shape rule (see Figure 1). The heterogeneous phase contained 120 stimuli and was administered twice, for a total duration of about 5 min.
2.2.4. Polar H10 Heart Rate Monitor
2.3. Procedure
- Dual task condition: We instructed participants to perform the switch task while keeping a 6.5 km/h pace. They finally had to stand still for another 10 min.
- Switch task condition: Participants performed an alternative version of the switch task but while standing stationary. The session concluded with another 10 min standing.
2.4. Outcome Variables and Data Analysis
2.4.1. HRV Data
2.4.2. Statistical Analysis
3. Results
3.1. Demographic Comparisons
3.2. HRV Variables
3.2.1. SDNN
3.2.2. RMSSD
3.2.3. LF Power
3.2.4. HF Power
3.2.5. LF/HF Ratio
3.2.6. TP
3.2.7. SampEn
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kelly, K.D.; Lissel, H.L.; Rowe, B.H.; Vincenten, J.A.; Voaklander, D.C. Sport and recreation-related head injuries treated in the emergency department. Clin. J. Sport. Med. 2001, 11, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Pfister, T.; Pfister, K.; Hagel, B.; Ghali, W.A.; Ronksley, P.E. The incidence of concussion in youth sports: A systematic review and meta-analysis. Br. J. Sports Med. 2016, 50, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Marar, M.; McIlvain, N.M.; Fields, S.K.; Comstock, R.D. Epidemiology of concussions among United States high school athletes in 20 sports. Am. J. Sports Med. 2012, 40, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Pierpoint, L.A.; Collins, C. Epidemiology of Sport-Related Concussion. Clin. Sports Med. 2021, 40, 1–18. [Google Scholar] [CrossRef]
- Chandran, A.; Boltz, A.J.; Morris, S.N.; Robison, H.J.; Nedimyer, A.K.; Collins, C.L.; Register-Mihalik, J.K. Epidemiology of Concussions in National Collegiate Athletic Association (NCAA) Sports: 2014/15–2018/19. Am. J. Sports Med. 2022, 50, 526–536. [Google Scholar] [CrossRef]
- Mack, C.D.; Solomon, G.; Covassin, T.; Theodore, N.; Cárdenas, J.; Sills, A. Epidemiology of Concussion in the National Football League, 2015–2019. Sports Health 2021, 13, 423–430. [Google Scholar] [CrossRef]
- Adams, R.; Li, A.Y.; Dai, J.B.; Haider, S.; Lau, G.K.; Cheung, K.P.; Post, A.F.; Gometz, A.; Choudhri, T.F. Modifying Factors for Concussion Incidence and Severity in the 2013-2017 National Hockey League Seasons. Cureus 2018, 10, e3530. [Google Scholar] [CrossRef]
- Cooke, R.; Matthew, S.; Richard, L.; Jain, N. The epidemiology of head injuries at 2019 Rugby Union World Cup. Physician Sportsmed. 2023, 51, 336–342. [Google Scholar] [CrossRef]
- Cusimano, M.D.; Casey, J.; Jing, R.; Mishra, A.; Solarski, M.; Techar, K.; Zhang, S. Assessment of Head Collision Events During the 2014 FIFA World Cup Tournament. JAMA 2017, 317, 2548–2549. [Google Scholar] [CrossRef]
- Bramley, H.; Patrick, K.; Lehman, E.; Silvis, M. High school soccer players with concussion education are more likely to notify their coach of a suspected concussion. Clin. Pediatr. 2012, 51, 332–336. [Google Scholar] [CrossRef]
- Meehan, W.P., 3rd; Mannix, R.C.; O’Brien, M.J.; Collins, M.W. The prevalence of undiagnosed concussions in athletes. Clin. J. Sport. Med. 2013, 23, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Kerr, Z.Y.; Register-Mihalik, J.K.; Kroshus, E.; Baugh, C.M.; Marshall, S.W. Motivations Associated With Nondisclosure of Self-Reported Concussions in Former Collegiate Athletes. Am. J. Sports Med. 2016, 44, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Patricios, J.S.; Schneider, K.J.; Dvorak, J.; Ahmed, O.H.; Blauwet, C.; Cantu, R.C.; Davis, G.A.; Echemendia, R.J.; Makdissi, M.; McNamee, M.; et al. Consensus statement on concussion in sport: The 6th International Conference on Concussion in Sport-Amsterdam, October 2022. Br. J. Sports Med. 2023, 57, 695–711. [Google Scholar] [CrossRef]
- Mez, J.; Daneshvar, D.H.; Kiernan, P.T.; Abdolmohammadi, B.; Alvarez, V.E.; Huber, B.R.; Alosco, M.L.; Solomon, T.M.; Nowinski, C.J.; McHale, L.; et al. Clinicopathological Evaluation of Chronic Traumatic Encephalopathy in Players of American Football. JAMA 2017, 318, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Skjeldal, O.H.; Skandsen, T.; Kinge, E.; Glott, T.; Solbakk, A.K. Long-term post-concussion symptoms. Tidsskr. Nor. Laegeforen 2022, 142, 1–9. [Google Scholar] [CrossRef]
- Redlinger, F.; Sicard, V.; Caron, G.; Ellemberg, D. Long-Term Cognitive Impairments of Sports Concussions in College-Aged Athletes: A Meta-Analysis. Transl. J. Am. Coll. Sports Med. 2022, 7, e000193. [Google Scholar] [CrossRef]
- Sicard, V.; Caron, G.; Moore, R.D.; Ellemberg, D. Post-exercise cognitive testing to assess persisting alterations in athletes with a history of concussion. Brain Inj. 2021, 35, 978–985. [Google Scholar] [CrossRef]
- Wylie, G.; Allport, A. Task switching and the measurement of “switch costs”. Psychol. Res. 2000, 63, 212–233. [Google Scholar] [CrossRef]
- Marshall, C.M.; Chan, N.; Tran, P.; DeMatteo, C. The use of an intensive physical exertion test as a final return to play measure in concussed athletes: A prospective cohort. Physician Sportsmed. 2019, 47, 158–166. [Google Scholar] [CrossRef]
- McGrath, N.; Dinn, W.M.; Collins, M.W.; Lovell, M.R.; Elbin, R.J.; Kontos, A.P. Post-exertion neurocognitive test failure among student-athletes following concussion. Brain Inj. 2013, 27, 103–113. [Google Scholar] [CrossRef]
- Memmini, A.K.; La Fountaine, M.F.; Broglio, S.P.; Moore, R.D. Long-Term Influence of Concussion on Cardio-Autonomic Function in Adolescent Hockey Players. J. Athl. Train. 2021, 56, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Sicard, V.; Lortie, J.-C.; Moore, R.; Ellemberg, D. Cognitive Testing and Exercise to Assess the Readiness to Return to Play After a Concussion. Transl. J. Am. Coll. Sports Med. 2020, 5, 1–9. [Google Scholar] [CrossRef]
- Harrison, A.; Lane-Cordova, A.; La Fountaine, M.F.; Moore, R.D. Concussion History and Heart Rate Variability During Bouts of Acute Stress. J. Athl. Train. 2022, 57, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Abaji, J.P.; Curnier, D.; Moore, R.D.; Ellemberg, D. Persisting Effects of Concussion on Heart Rate Variability during Physical Exertion. J. Neurotrauma 2016, 33, 811–817. [Google Scholar] [CrossRef]
- Jänig, W. The Integrative Action of the Autonomic Nervous System: Neurobiology of Homeostasis; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Gibbons, C.H. Basics of autonomic nervous system function. Handb. Clin. Neurol. 2019, 160, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.Y.; Bunsawat, K.; Amann, M. Autonomic cardiovascular control during exercise. Am. J. Physiol. Heart Circ. Physiol. 2023, 325, H675–H686. [Google Scholar] [CrossRef]
- Benarroch, E.E. Physiology and Pathophysiology of the Autonomic Nervous System. Continuum 2020, 26, 12–24. [Google Scholar] [CrossRef]
- Benarroch, E.E. The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clin. Proc. 1993, 68, 988–1001. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 2009, 33, 81–88. [Google Scholar] [CrossRef]
- Bishop, S.A.; Neary, J.P. Assessing prefrontal cortex oxygenation after sport concussion with near-infrared spectroscopy. Clin. Physiol. Funct. Imaging 2018, 38, 573–585. [Google Scholar] [CrossRef]
- Eierud, C.; Craddock, R.C.; Fletcher, S.; Aulakh, M.; King-Casas, B.; Kuehl, D.; LaConte, S.M. Neuroimaging after mild traumatic brain injury: Review and meta-analysis. Neuroimage Clin. 2014, 4, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Dettwiler, A.; Murugavel, M.; Putukian, M.; Cubon, V.; Furtado, J.; Osherson, D. Persistent differences in patterns of brain activation after sports-related concussion: A longitudinal functional magnetic resonance imaging study. J. Neurotrauma 2014, 31, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.; Zhang, K.; Gay, M.; Horovitz, S.; Hallett, M.; Sebastianelli, W.; Slobounov, S. Alteration of brain default network in subacute phase of injury in concussed individuals: Resting-state fMRI study. Neuroimage 2012, 59, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Meaney, D.F.; Smith, D.H. Biomechanics of Concussion. Clin. Sports Med. 2011, 30, 19–31. [Google Scholar] [CrossRef]
- La Fountaine, M.F. An anatomical and physiological basis for the cardiovascular autonomic nervous system consequences of sport-related brain injury. Int. J. Psychophysiol. 2018, 132, 155–166. [Google Scholar] [CrossRef]
- Gall, B.; Parkhouse, W.S.; Goodman, D. Exercise following a sport induced concussion. Br. J. Sports Med. 2004, 38, 773–777. [Google Scholar] [CrossRef]
- La Fountaine, M.F.; Heffernan, K.S.; Gossett, J.D.; Bauman, W.A.; De Meersman, R.E. Transient suppression of heart rate complexity in concussed athletes. Auton. Neurosci. 2009, 148, 101–103. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- McCraty, R.; Shaffer, F. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-regulatory Capacity, and Health risk. Glob. Adv. Health Med. 2015, 4, 46–61. [Google Scholar] [CrossRef]
- Anderson, F.L.; Hellwinkel, J.E.; Montjoy, M.; Levi, M.; Tu, B.; Noble, J.M.; Ahmad, C.S.; Bottiglieri, T.S. Change in Heart Rate Variability after Concussion in a Collegiate Soccer Player. Neurotrauma Rep. 2020, 1, 88–92. [Google Scholar] [CrossRef]
- Coffman, C.A.; Kay, J.J.M.; Saba, K.M.; Harrison, A.T.; Holloway, J.P.; LaFountaine, M.F.; Moore, R.D. Predictive Value of Subacute Heart Rate Variability for Determining Outcome Following Adolescent Concussion. J. Clin. Med. 2021, 10, 161. [Google Scholar] [CrossRef] [PubMed]
- Ellingson, C.J.; Singh, J.; Ellingson, C.A.; Sirant, L.W.; Krätzig, G.P.; Dorsch, K.D.; Piskorski, J.; Neary, J.P. Alterations in Baroreflex Sensitivity and Blood Pressure Variability Following Sport-Related Concussion. Life 2022, 12, 1400. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Frantz, J.; Moralez, G.; Sabo, T.; Davis, P.F.; Davis, S.L.; Bell, K.R.; Purkayastha, S. Reduced Resting and Increased Elevation of Heart Rate Variability With Cognitive Task Performance in Concussed Athletes. J. Head. Trauma. Rehabil. 2019, 34, 45–51. [Google Scholar] [CrossRef]
- Purkayastha, S.; Williams, B.; Murphy, M.; Lyng, S.; Sabo, T.; Bell, K.R. Reduced heart rate variability and lower cerebral blood flow associated with poor cognition during recovery following concussion. Auton. Neurosci. 2019, 220, 102548. [Google Scholar] [CrossRef]
- Senthinathan, A.; Mainwaring, L.M.; Hutchison, M. Heart Rate Variability of Athletes Across Concussion Recovery Milestones: A Preliminary Study. Clin. J. Sport Med. 2017, 27, 288–295. [Google Scholar] [CrossRef]
- Worts, P.R.; Mason, J.R.; Burkhart, S.O.; Sanchez-Gonzalez, M.A.; Kim, J.S. The acute, systemic effects of aerobic exercise in recently concussed adolescent student-athletes: Preliminary findings. Eur. J. Appl. Physiol. 2022, 122, 1441–1457. [Google Scholar] [CrossRef]
- Pyndiura, K.L.; Di Battista, A.P.; Hutchison, M.G. A history of concussion is associated with minimal perturbations to heart rate variability in athletes. Brain Inj. 2020, 34, 1416–1421. [Google Scholar] [CrossRef]
- Held, J.; Vîslă, A.; Wolfer, C.; Messerli-Bürgy, N.; Flückiger, C. Heart rate variability change during a stressful cognitive task in individuals with anxiety and control participants. BMC Psychol. 2021, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Byrd, D.L.; Reuther, E.T.; McNamara, J.P.H.; DeLucca, T.L.; Berg, W.K. Age differences in high frequency phasic heart rate variability and performance response to increased executive function load in three executive function tasks. Front. Psychol. 2015, 5, 1470. [Google Scholar] [CrossRef]
- Luque-Casado, A.; Perales, J.C.; Cárdenas, D.; Sanabria, D. Heart rate variability and cognitive processing: The autonomic response to task demands. Biol. Psychol. 2016, 113, 83–90. [Google Scholar] [CrossRef]
- Albaladejo-García, C.; García-Aguilar, F.; Moreno, F.J. The role of inhibitory control in sport performance: Systematic review and meta-analysis in stop-signal paradigm. Neurosci. Biobehav. Rev. 2023, 147, 105108. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.-Z.; Hao, H.; Xiuying, M.; Chi, L. The contributions of executive functions to decision-making in sport. Int. J. Sport Exerc. Psychol. 2024, 1–20. [Google Scholar] [CrossRef]
- Vaughan, R.S.; Laborde, S. Attention, working-memory control, working-memory capacity, and sport performance: The moderating role of athletic expertise. Eur. J. Sport. Sci. 2021, 21, 240–249. [Google Scholar] [CrossRef]
- Monsell, S. Task switching. Trends Cogn. Sci. 2003, 7, 134–140. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Sicard, V.; Moore, R.D.; Simard, A.; Lavoie, G.; Ellemberg, D. Psychometric properties of a color-shape version of the switch task. Appl. Neuropsychol. Adult 2022, 29, 1020–1029. [Google Scholar] [CrossRef]
- Broglio, S.P.; Tomporowski, P.D.; Ferrara, M.S. Balance performance with a cognitive task: A dual-task testing paradigm. Med. Sci. Sports Exerc. 2005, 37, 689–695. [Google Scholar] [CrossRef]
- Howell, D.R.; Osternig, L.R.; Chou, L.S. Dual-task effect on gait balance control in adolescents with concussion. Arch. Phys. Med. Rehabil. 2013, 94, 1513–1520. [Google Scholar] [CrossRef]
- Howell, D.R.; Osternig, L.R.; Chou, L.-S. Detection of Acute and Long-Term Effects of Concussion: Dual-Task Gait Balance Control Versus Computerized Neurocognitive Test. Arch. Phys. Med. Rehabil. 2018, 99, 1318–1324. [Google Scholar] [CrossRef]
- Oldham, J.R.; Howell, D.R.; Knight, C.A.; Crenshaw, J.R.; Buckley, T.A. Single-Task and Dual-Task Tandem Gait Performance Across Clinical Concussion Milestones in Collegiate Student-Athletes. Clin. J. Sport Med. 2021, 31, e392–e397. [Google Scholar] [CrossRef]
- Hagen, A.C.; Tracy, B.L.; Stephens, J.A. Altered neural recruitment during single and dual tasks in athletes with repeat concussion. Front. Hum. Neurosci. 2024, 18, 1515514. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, G.; Bolduc, M.; Sicard, V.; Lepore, F.; Ellemberg, D. Maintaining Cognitive Performance at the Expense of Gait Speed for Asymptomatic Concussed Athletes: A Novel Dual-Task and Post-Exercise Assessment. Brain Sci. 2024, 14, 715. [Google Scholar] [CrossRef] [PubMed]
- Kumar, C.; Sakshi, P.; Sinha, N.; Sunita; Kumar, T. HRV changes in young adults with depression. J. Fam. Med. Prim. Care 2024, 13, 2585–2588. [Google Scholar] [CrossRef]
- Thayer, J.F.; Ahs, F.; Fredrikson, M.; Sollers, J.J., 3rd; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [Google Scholar] [CrossRef]
- Robe, A.; Dobrean, A.; Cristea, I.A.; Păsărelu, C.R.; Predescu, E. Attention-deficit/hyperactivity disorder and task-related heart rate variability: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2019, 99, 11–22. [Google Scholar] [CrossRef]
- Delaney, J.P.; Brodie, D.A. Effects of short-term psychological stress on the time and frequency domains of heart-rate variability. Percept. Mot. Ski. 2000, 91, 515–524. [Google Scholar] [CrossRef]
- Echemendia, R.J.; Meeuwisse, W.; McCrory, P.; Davis, G.A.; Putukian, M.; Leddy, J.; Makdissi, M.; Sullivan, S.J.; Broglio, S.P.; Raftery, M.; et al. The Sport Concussion Assessment Tool 5th Edition (SCAT5): Background and rationale. Br. J. Sports Med. 2017, 51, 848–850. [Google Scholar] [CrossRef] [PubMed]
- Sicard, V.; Simard, A.; Moore, R.D.; Ellemberg, D. Practice effect associated with the serial administration of the switch task and its implications in the assessment of sports-related concussion. J. Clin. Exp. Neuropsychol. 2020, 42, 965–973. [Google Scholar] [CrossRef]
- Gellish, R.L.; Goslin, B.R.; Olson, R.E.; McDonald, A.; Russi, G.D.; Moudgil, V.K. Longitudinal modeling of the relationship between age and maximal heart rate. Med. Sci. Sports Exerc. 2007, 39, 822–829. [Google Scholar] [CrossRef]
- McCrory, P.; Meeuwisse, W.; Dvorak, J.; Aubry, M.; Bailes, J.; Broglio, S.; Cantu, R.C.; Cassidy, D.; Echemendia, R.J.; Castellani, R.J.; et al. Consensus statement on concussion in sport—The 5th international conference on concussion in sport held in Berlin, October 2016. Br. J. Sports Med. 2017, 51, 838–847. [Google Scholar] [CrossRef]
- Meier, T.B.; Bellgowan, P.S.F.; Singh, R.; Kuplicki, R.; Polanski, D.W.; Mayer, A.R. Recovery of Cerebral Blood Flow Following Sports-Related Concussion. JAMA Neurol. 2015, 72, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Williamson, J.B.; Heilman, K.M.; Porges, E.C.; Lamb, D.G.; Porges, S.W. A possible mechanism for PTSD symptoms in patients with traumatic brain injury: Central autonomic network disruption. Front. Neuroeng. 2013, 6, 13. [Google Scholar] [CrossRef]
- Lipton, M.L.; Gulko, E.; Zimmerman, M.E.; Friedman, B.W.; Kim, M.; Gellella, E.; Gold, T.; Shifteh, K.; Ardekani, B.A.; Branch, C.A. Diffusion-tensor imaging implicates prefrontal axonal injury in executive function impairment following very mild traumatic brain injury. Radiology 2009, 252, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Hilz, M.J.; DeFina, P.A.; Anders, S.; Koehn, J.; Lang, C.J.; Pauli, E.; Flanagan, S.R.; Schwab, S.; Marthol, H. Frequency analysis unveils cardiac autonomic dysfunction after mild traumatic brain injury. J. Neurotrauma 2011, 28, 1727–1738. [Google Scholar] [CrossRef] [PubMed]
- Kontos, A.P.; Huppert, T.J.; Beluk, N.H.; Elbin, R.J.; Henry, L.C.; French, J.; Dakan, S.M.; Collins, M.W. Brain activation during neurocognitive testing using functional near-infrared spectroscopy in patients following concussion compared to healthy controls. Brain Imaging Behav. 2014, 8, 621–634. [Google Scholar] [CrossRef]
- Bonnemeier, H.; Richardt, G.; Potratz, J.; Wiegand, U.K.; Brandes, A.; Kluge, N.; Katus, H.A. Circadian profile of cardiac autonomic nervous modulation in healthy subjects: Differing effects of aging and gender on heart rate variability. J. Cardiovasc. Electrophysiol. 2003, 14, 791–799. [Google Scholar] [CrossRef]
- Plews, D.J.; Laursen, P.B.; Kilding, A.E.; Buchheit, M. Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. Eur. J. Appl. Physiol. 2012, 112, 3729–3741. [Google Scholar]
Concussion (n = 16) | Control (n = 18) | |
---|---|---|
Age (years) | 20.90 ± 2.55 | 19.41 ± 1.62 |
Height (m) | 1.79 ± 0.049 | 1.83 ± 0.080 |
BMI (kg/m2) | 26.36 ± 3.19 | 24.44 ± 3.35 |
Time since concussion (months) | 5.46 ± 2.00 | NA |
Education level | 9 Universities | 4 Universities |
7 Colleges | 14 Colleges | |
Sport | 9 Rugby | 2 Rugby |
2 Football | 3 Football | |
1 Ultimate frisbee | 3 Volleyball | |
1 Hockey | 1 Hockey | |
1 Soccer | 4 Soccer | |
1 Basketball | 5 Basketball | |
1 Cheerleading |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolduc, M.; Lavoie, G.; Sicard, V.; Lépine, J.; Ellemberg, D. Investigating Persistent Sympathovagal Dysregulation Following a Complex Dual Task in Concussed Athletes. J. Funct. Morphol. Kinesiol. 2025, 10, 115. https://doi.org/10.3390/jfmk10020115
Bolduc M, Lavoie G, Sicard V, Lépine J, Ellemberg D. Investigating Persistent Sympathovagal Dysregulation Following a Complex Dual Task in Concussed Athletes. Journal of Functional Morphology and Kinesiology. 2025; 10(2):115. https://doi.org/10.3390/jfmk10020115
Chicago/Turabian StyleBolduc, Mathieu, Gabriel Lavoie, Veronik Sicard, Julien Lépine, and Dave Ellemberg. 2025. "Investigating Persistent Sympathovagal Dysregulation Following a Complex Dual Task in Concussed Athletes" Journal of Functional Morphology and Kinesiology 10, no. 2: 115. https://doi.org/10.3390/jfmk10020115
APA StyleBolduc, M., Lavoie, G., Sicard, V., Lépine, J., & Ellemberg, D. (2025). Investigating Persistent Sympathovagal Dysregulation Following a Complex Dual Task in Concussed Athletes. Journal of Functional Morphology and Kinesiology, 10(2), 115. https://doi.org/10.3390/jfmk10020115