Parametric Optimization of Entropy Generation in Hybrid Nanofluid in Contracting/Expanding Channel by Means of Analysis of Variance and Response Surface Methodology
Abstract
:1. Introduction
2. Mathematical Modelling
2.1. Governing Equations
2.2. Entropy Generation
3. Results
3.1. Response Surface Methodology (RSM)
3.2. ANOVA
3.3. Development of Empirical Correlation
3.4. Sensitivity Analysis of the Pertained Parameter
4. Conclusions
- The sensitivity analysis identified that the radiation parameter was the most influential in the flow.
- It was found that by increasing radiation parameters, entropy generation increased.
- It was noted that the group parameter had a significant role in determining the flow behavior.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
b(t) | Expand or contract function |
b0 | Initial channel height |
Bi, i = 1, 2, 3, 4, 5 | Constant parameters in hybrid nanofluids |
α | Expansion ratio |
f (η), g(η) | Compositional form of temperature |
k*nf | Mean absorption coefficient of the hybrid nanofluid |
M | Magnetic parameter |
N | Radiation parameter |
σ* | Stefan Boltzmann constant |
Λ | Wall permeability |
Pr | Prandtl number |
p* | Dimensional pressure |
p | Non-dimensional pressure |
Re | Reynold number |
Br | Brinkman number |
Ec | Eckert number |
t | Time |
T | Temperature |
T1 | Temperature at the lower plate |
T2 | Temperature at the upper plate |
u¯ | Dimensional velocity in the x direction |
u | Non-dimensional velocity in the x direction |
Dimensional velocity in the y direction | |
V | Non-dimensional velocity in the y direction |
F | Stream function variable |
θ | Temperature |
A1 | Temperature difference |
Nanoparticle volume fractions | |
Entropy generation | |
Ne | Non-dimensional total entropy generation |
Br/A1 | Group parameter |
NH | Entropy generated by heat transfer |
Nf | Entropy generated by fluid friction |
Nm | Entropy generated by the magnetic field force |
A, B, C | Regression parameters |
βi, i = 0, 1, 2,3, 11, 22, 33, 12, 13, 23 | Regression coefficient for Ne |
Subscripts | |
F | Host fluid |
hnf | Hybrid nanofluid |
P | Particle |
References
- Zhang, L.; Bhatti, M.M.; Marin, M.; Mekheimer, K.S. Entropy analysis on the blood flow through anisotropically tapered arteries filled with magnetic zinc-oxide (ZnO) nanoparticles. Entropy 2020, 22, 1070. [Google Scholar] [CrossRef]
- Jamalabadi, M.Y.A.; Safaei, M.R.; Alrashed, A.A.A.A.; Nguyen, T.K.; Filho, E.P.B. Entropy generation in thermal radiative loading of structures with distinct heaters. Entropy 2017, 19, 506. [Google Scholar] [CrossRef]
- Ellahi, R.; Alamri, S.Z.; Basit, A.; Majeed, A. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. J. Taibah Univ. Sci. 2018, 12, 476. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Abbas, T.; Rashidi, M.M.; Ali, M.E.-S. Numerical simulation of entropy generation with thermal radiation on MHD carreau nanofluid towards a shrinking sheet. Entropy 2016, 18, 200. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Abbas, T.; Rashidi, M.M.; Ali, M.E.-S.; Yang, Z. Entropy generation on MHD Eyring–Powell nanofluid through a permeable stretching surface. Entropy 2016, 18, 224. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Alidoust, S.; Mohammadnejad Ardeshiri, E.; Kamyab, M.H.; Toghraie, D. Experimental study of rheological behavior of MWCNT-Al2O3/SAE50 hybrid nanofluid to provide the best nano-lubrication conditions. Nanoscale Res. Lett. 2022, 17, 4. [Google Scholar] [CrossRef]
- Esfe, M.H.; Arani, A.A.A.; Esfandeh, S. Improving engine oil lubrication in light-duty vehicles by using of dispersing MWCNT and ZnO nanoparticles in 5W50 as viscosity index improvers (VII). Appl. Therm. Eng. 2018, 143, 493–506. [Google Scholar] [CrossRef]
- Abdulrahman, A. Modeling and optimization of dynamic viscosity of copper nanoparticles dispersed in gear oil using response surface methodology. Mater. Today Proc. 2021, 42, 771–775. [Google Scholar] [CrossRef]
- Kole, M.; Dey, T.K. Role of interfacial layer and clustering on the effective thermal conductivity of CuO–gear oil nanofluids. Exp. Therm. Fluid Sci. 2011, 35, 1490–1495. [Google Scholar] [CrossRef]
- Gürel, A.E.; Ağbulut, Ü.; Biçen, Y. Assessment of machine learning, time series, response surface methodology and empirical models in prediction of global solar radiation. J. Clean. Prod. 2020, 277, 122353. [Google Scholar] [CrossRef]
- Hussain, D.; Asghar, Z.; Zeeshan, A.; Alsulami, H. Analysis of sensitivity of thermal conductivity and variable viscosity on wall heat flux in flow of viscous fluid over a porous wedge. Int. Commun. Heat Mass Transf. 2022, 135, 106104. [Google Scholar] [CrossRef]
- Chan, S.Q.; Aman, F.; Mansur, S. Sensitivity analysis on thermal conductivity characteristics of a water-based bionanofluid flow past a wedge surface. Math. Probl. Eng. 2018, 2018, 9410167. [Google Scholar] [CrossRef]
- Vahedi, S.M.; Pordanjani, A.H.; Raisi, A.; Chamkha, A.J. Sensitivity analysis and optimization of MHD forced convection of a Cu-water nanofluid flow past a wedge. Eur. Phys. J. Plus 2019, 134, 124. [Google Scholar] [CrossRef]
- Shirvan, K.M.; Mamourian, M.; Mirzakhanlari, S.; Ellahi, R. Two phase simulation and sensitivity analysis of effective parameters on combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by RSM. J. Mol. Liq. 2016, 220, 888–901. [Google Scholar] [CrossRef]
- Mahanthesh, B.; Shehzad, S.A.; Mackolil, J.; Shashikumar, N.S. Heat transfer optimization of hybrid nanomaterial using modified Buongiorno model: A sensitivity analysis. Int. J. Heat Mass Transf. 2021, 171, 121081. [Google Scholar] [CrossRef]
- Mahanthesh, B.; Mackolil, J.; Mallikarjunaiah, S.M. Response surface optimization of heat transfer rate in Falkner-Skan flow of ZnO−EG nanoliquid over a moving wedge: Sensitivity analysis. Int. Commun. Heat Mass Transf. 2021, 125, 105348. [Google Scholar] [CrossRef]
- Rana, P.; Gupta, G. Numerical and sensitivity computations of three-dimensional flow and heat transfer of nanoliquid over a wedge using modified Buongiorno model. Comput. Math. Appl. 2021, 101, 51–62. [Google Scholar] [CrossRef]
- Darbari, B.; Rashidi, S.; Abolfazli Esfahani, J. Sensitivity analysis of entropy generation in nanofluid flow inside a channel by response surface methodology. Entropy 2016, 18, 52. [Google Scholar] [CrossRef]
- Sheremet, M.A.; Grosan, T.; Pop, I. Natural convection and entropy generation in a square cavity with variable temperature side walls filled with a nanofluid: Buongiorno’s mathematical model. Entropy 2017, 19, 337. [Google Scholar] [CrossRef]
- Safaei, M.R.; Ahmadi, G.; Goodarzi, M.S.; Shadloo, M.S.; Goshayeshi, H.R.; Dahari, M. Heat transfer and pressure drop in fully developed turbulent flows of graphene nanoplatelets–silver/water nanofluids. Fluids 2016, 1, 20. [Google Scholar] [CrossRef]
- Goodarzi, M.; Tlili, I.; Tian, Z.; Safaei, M.R. Efficiency assessment of using graphene nanoplatelets-silver/water nanofluids in microchannel heat sinks with different cross-sections for electronics cooling. Int. J. Numer. Methods Heat Fluid Flow 2020, 30, 347–372. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. An analytical treatment for the exact solutions of MHD flow and heat over two–three dimensional deforming bodies. Int. J. Heat Mass Transf. 2015, 90, 781–789. [Google Scholar]
- Kanwal, A.; Khan, A.A.; Sait, S.M.; Ellahi, R. Heat transfer analysis of magnetohydrodynamics peristaltic fluid with inhomogeneous solid particles and variable thermal conductivity through curved passageway. Int. J. Numer. Methods Heat Fluid Flow 2024, 34, 1884. [Google Scholar] [CrossRef]
- Ellahi, R.; Hussain, F.; Abbas, S.A.; Sarafraz, M.M.; Goodarzi, M.; Shadloo, M.S. Study of two-phase newtonian nanofluid flow hybrid with hafnium particles under the effects of slip. Inventions 2020, 5, 6. [Google Scholar] [CrossRef]
- Zeeshan, A.; Hussain, D.; Asghar, Z.; Bhatti, M.M.; Duraihem, F.Z. Thermal optimization of MHD nanofluid over a wedge by using response surface methodology: Sensitivity analysis. Propuls. Power Res. 2023, 12, 556–567. [Google Scholar]
- Chamkha, A.J.; Jena, S.K.; Mahapatra, S.K. MHD convection of nanofluids: A review. J. Nanofluids 2015, 4, 271–292. [Google Scholar]
- Bhatti, M.M.; Bég, O.A.; Ellahi, R.; Doranehgard, M.H.; Rabiei, F. Electro-magnetohydrodynamics hybrid nanofluid flow with gold and magnesium oxide nanoparticles through vertical parallel plates. J. Magn. Magn. Mater. 2022, 564, 170136. [Google Scholar]
- Gibanov, N.S.; Sheremet, M.A.; Oztop, H.F.; Al-Salem, K. MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid. J. Magn. Magn. Mater. 2018, 452, 193–204. [Google Scholar]
- Zafar, S.; Khan, A.A.; Sait, S.M.; Ellahi, R. Numerical investigation on unsteady compressible flow of viscous fluid with convection under the effect of Joule heating. J. Comput. Appl. Mech. 2024, 55, 423–439. [Google Scholar]
- Rizwan, M.; Hassan, M.; Makinde, O.D.; Bhatti, M.M.; Marin, M. Rheological modeling of metallic oxide nanoparticles containing non-newtonian nanofluids and potential investigation of heat and mass flow characteristics. Nanomaterials 2022, 12, 1237. [Google Scholar] [CrossRef]
- Zeeshan, A.; Khan, M.I.; Ellahi, R.; Asghar, A.Z. Artificial neural network simulation and sensitivity analysis for optimal thermal transport of magnetic viscous fluid over shrinking wedge via RSM. Int. J. Numer. Methods Heat Fluid Flow 2023, 33, 3492–3518. [Google Scholar] [CrossRef]
- Ellahi, R.; Zeeshan, A.; Shahzad, N.; Hussain, A.; Sait, S.M. Mixed convection of two layers with radiative electro-magnetohydrodynamics nanofluid flow in vertical enclosure. Nanotechnology 2024, 35, 095402. [Google Scholar] [CrossRef]
- Liao, S.J. An analytic approximate technique for free oscillations of positively damped systems with algebraically decaying amplitude. Int. J. Non-Linear Mech. 2003, 38, 1173–1183. [Google Scholar] [CrossRef]
- Ellahi, R. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions. Appl. Math. Model. 2013, 37, 1451–1457. [Google Scholar] [CrossRef]
- Hussain, F.; Ellahi, R.; Zeeshan, A. Mathematical models of electro magnetohydrodynamic multiphase flows synthesis with nanosized Hafniump particles. Appl. Sci. 2018, 8, 275. [Google Scholar] [CrossRef]
- Srinivas, S.; Reddy, A.S.; Ramamohan, T.R. A study on thermal-diffusion and diffusion-thermo effects in a two-dimensional viscous flow between slowly expanding or contracting walls with weak permeability. Int. J. Heat Mass Transf. 2012, 55, 3008–3020. [Google Scholar] [CrossRef]
Input Parameter | Coding Symbol | Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
M | A | 0 | 0.75 | 1.5 |
N | B | 0.1 | 0.115 | 0.13 |
Br/A | C | 0 | 1.75 | 3.5 |
Experiment Runs | Point Type | Coded Value | Real Value | Output Response | ||||
---|---|---|---|---|---|---|---|---|
A | B | C | M | N | Br/A1 | Ne | ||
1 | Factorial | −1 | 1 | −1 | 0.00 | 0.13 | 0.000 | 77.174 |
2 | 1 | 1 | −1 | 1.50 | 0.13 | 0.000 | 78.939 | |
3 | −1 | −1 | −1 | 0.00 | 0.1 | 0.000 | 98.673 | |
4 | 1 | −1 | −1 | 1.5 | 0.1 | 0.000 | 101.367 | |
5 | −1 | 1 | 1 | 0.0 | 0.13 | 3.5 | 92.380 | |
6 | 1 | 1 | 1 | 1.5 | 0.13 | 3.5 | 94.345 | |
7 | −1 | −1 | 1 | 0.00 | 0.1 | 3.5 | 113.879 | |
8 | 1 | −1 | 1 | 1.5 | 0.1 | 3.5 | 116.773 | |
9 | Axial | −1 | 0 | 0 | 0.00 | 0.115 | 0.175 | 76.422 |
10 | 1 | 0 | 0 | 1.50 | 0.115 | 0.175 | 77.508 | |
11 | 0 | 1 | 0 | 0.75 | 0.13 | 0.175 | 85.541 | |
12 | 0 | −1 | 0 | 0.75 | 0.1 | 0.175 | 107.596 | |
13 | 0 | 0 | −1 | 0.75 | 0.115 | 0.000 | 69.192 | |
14 | 0 | 0 | 1 | 0.75 | 0.115 | 3.5 | 84.443 | |
15–20 | Central | 0 | 0 | 0 | 0.75 | 0.115 | 0.175 | 76.817 |
Ne | Source | DOF | AdjSS | AdjMS | F-Value | p-Value |
Model | 9 | 3768.32 | 418.70 | 6720.47 | 0.000 | |
Linear | 3 | 1803.67 | 601.22 | 9650.07 | 0.000 | |
Square | 3 | 1964.20 | 654.73 | 10,508.93 | 0.000 | |
Interaction | 3 | 0.45 | 0.15 | 2.42 | 0.127 | |
Error | 10 | 0.62 | 0.06 | - | - | |
Lack of Fit | 5 | 0.62 | 0.12 | - | - | |
Pure Error | 5 | 0.000 | 0.000 | - | - | |
Total | 19 | 3768.94 | - | - | - |
Term | Coefficient | p-Value | |
---|---|---|---|
Ne | |||
Constant | 76.8209 | 0.000 | |
1.0404 | 0.000 | ||
10.9910 | 0.000 | ||
7.6474 | 0.000 | ||
0.138 | 0.379 | Not significant | |
19.742 | 0.000 | ||
−0.009 | 0.954 | Not significant | |
0.2323 | 0.025 | ||
0.0500 | 0.583 | Not significant | |
0.0001 | 0.999 | Not significant | |
- |
−1 | −1 | 1.06363 | 14.9394 | 7.6474 |
0 | 1.067114 | 15.53166 | 7.6474 | |
1 | 1.070599 | 16.12392 | 7.6474 | |
0 | −1 | 1.06363 | 15.11362 | 7.6474 |
0 | 1.067114 | 15.70588 | 7.6474 | |
1 | 1.070599 | 16.29814 | 7.6474 | |
1 | −1 | 1.06363 | 15.28785 | 7.6474 |
0 | 1.067114 | 15.88011 | 7.6474 | |
1 | 1.070599 | 16.47237 | 7.6474 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeeshan, A.; Ellahi, R.; Rafique, M.A.; Sait, S.M.; Shehzad, N. Parametric Optimization of Entropy Generation in Hybrid Nanofluid in Contracting/Expanding Channel by Means of Analysis of Variance and Response Surface Methodology. Inventions 2024, 9, 92. https://doi.org/10.3390/inventions9050092
Zeeshan A, Ellahi R, Rafique MA, Sait SM, Shehzad N. Parametric Optimization of Entropy Generation in Hybrid Nanofluid in Contracting/Expanding Channel by Means of Analysis of Variance and Response Surface Methodology. Inventions. 2024; 9(5):92. https://doi.org/10.3390/inventions9050092
Chicago/Turabian StyleZeeshan, Ahmad, Rahmat Ellahi, Muhammad Anas Rafique, Sadiq M. Sait, and Nasir Shehzad. 2024. "Parametric Optimization of Entropy Generation in Hybrid Nanofluid in Contracting/Expanding Channel by Means of Analysis of Variance and Response Surface Methodology" Inventions 9, no. 5: 92. https://doi.org/10.3390/inventions9050092
APA StyleZeeshan, A., Ellahi, R., Rafique, M. A., Sait, S. M., & Shehzad, N. (2024). Parametric Optimization of Entropy Generation in Hybrid Nanofluid in Contracting/Expanding Channel by Means of Analysis of Variance and Response Surface Methodology. Inventions, 9(5), 92. https://doi.org/10.3390/inventions9050092