Closed-Form Hyper-Rayleigh Mode Analysis of the Fluctuating Double-Rayleigh with Line-of-Sight Fading Channel
Abstract
:1. Introduction
- The closed-form expression is derived for the moment-function of the fluctuating double-Rayleigh with line-of-sight channel model, which helps to evaluate the exact expression for the amount of fading.
- Novel exact expressions for the cumulative distribution function and the outage probability of the fluctuating double-Rayleigh with line-of-sight channel model are derived, extending the existing result, and are valid for an arbitrary positive fading parameter m.
- A hyper-Rayleigh map, which associates the set of system parameter values with the specific propagation conditions, is obtained. The presented results are valid not only for an “asymptotic” definition of the hyper-Rayleigh map (as it is defined in classic technical literature), but for all possible values of the system and channel parameters.
- The performed analysis is exemplified with a problem of physical layer security analysis. A thorough numeric analysis of the strictly positive secrecy capacity is performed for all possible hyper-Rayleigh scenarios (i.e., channel parameters).
- The asymptotic parameters’ regions, where either the amount of fading, or the outage probability, or the ergodic capacity are nearly insensible to the channel parameter change are identified.
2. Materials and Methods
2.1. Physical Channel Model
2.2. Statistical Channel Model
2.3. Hyper Rayleigh Mode
- amount of fading is greater than AoF for the Rayleigh model, i.e., 1:
- Or for equal values of the asymptotic (in sense of ) outage probability the average SNR is greater than the Rayleigh average SNR
- Or for equal average SNRs, the asymptotic (in sense of ) average capacity is less than that for the Rayleigh model.
2.4. Secrecy Communication Metrics
3. Results
3.1. Amount of Fading
3.2. Outage Probability
3.3. Channel Capacity
4. Discussion
- For the simulation, the shadowing parameter m is upper-bounded by (although the plots are presented for ), since numerous studies [26,27] showed that the values (depending on the problem under consideration) can be assumed as ”almost asymptotic”. This generally means that its increase does not deliver significant changes in the result.
- The lower bound of the shadowing parameter was set to 0.5, although, are also possible (since the shadowing is introduced via Gamma-distributed model). But numerous simulations demonstrated that do not make any contribution to the current research, thus were omitted.
- The Rician K-factor was chosen in order to be consistent with practical scenarios of real-life measurements (i.e., from dB to 30 dB).
- The expression (16) is given in terms of an infinite series, thus for further numerical calculations it was truncated to 200 terms to yield at least 4-digit accuracy compared with the brute-force numerical integration. Moreover, if an extra precision (for a fixed number of summands) is required, well-established techniques for convergence increase can be applied (for example, Richardson extrapolation or Shanks’ transformation (see [69])).
4.1. Hyper-Rayleigh Regime Numerical Analysis
4.2. Illustrative Example: SPSC in Hyper-Rayleigh Regime
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Proof of Theorem 1
Appendix B. Proof of Theorem 2
References
- Launay, F. NG-RAN and 5G-NR: 5G Radio Access Network and Radio Interface, 1st ed.; Wiley-ISTE: Hoboken, NJ, USA, 2021. [Google Scholar]
- Jiang, W.; Luo, F.L. 6G Key Technologies: A Comprehensive Guide; Wiley-IEEE Press: New York, NY, USA, 2022. [Google Scholar]
- Khorov, E.; Levitsky, I.; Akyildiz, I.F. Current Status and Directions of IEEE 802.11be, the Future Wi-Fi 7. IEEE Access 2020, 8, 88664–88688. [Google Scholar] [CrossRef]
- Leinonen, M.E.; Jokinen, M.; Tervo, N.; Kursu, O.; Parssinen, A. System EVM Characterization and Coverage Area Estimation of 5G Directive mmW Links. IEEE Trans. Microw. Theory Tech. 2019, 67, 5282–5295. [Google Scholar] [CrossRef] [Green Version]
- Uysal, M.; Li, J.; Yu, M. Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels. IEEE Trans. Wirel. Commun. 2006, 5, 1229–1233. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.; Kumar, C.; Armghan, A.; Singh, M.; Alsharari, M.; Aliqab, K. Simulative Investigation of the Hybrid, Spatially Multiplexed MIMO-FSO Transmission System Under Atmospheric Turbulence. IEEE Access 2023, 11, 55071–55080. [Google Scholar] [CrossRef]
- Jurado-Navas, A.; Garrido-Balsells, J.M.; Paris, J.F.; Castillo-Vazquez, M.; Puerta-Notario, A. Further insights on Malaga distribution for atmospheric optical communications. In Proceedings of the 2012 International Workshop on Optical Wireless Communications (IWOW), Pisa, Italy, 22 October 2012; pp. 1–3. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, N.; Xu, M.; Xu, Z.; Zhang, Q.; Song, Z. Outage Probability and Average BER of UAV-assisted Dual-hop FSO Communication with Amplify-and-Forward Relaying. IEEE Trans. Veh. Technol. 2023. [Google Scholar] [CrossRef]
- Zedini, E.; Kammoun, A.; Soury, H.; Hamdi, M.; Alouini, M.S. Performance Analysis of Dual-Hop Underwater Wireless Optical Communication Systems Over Mixture Exponential-Generalized Gamma Turbulence Channels. IEEE Trans. Commun. 2020, 68, 5718–5731. [Google Scholar] [CrossRef]
- Le-Tran, M.; Kim, S. Performance analysis of multi-hop underwater wireless optical communication systems over exponential-generalized gamma turbulence channels. IEEE Trans. Veh. Technol. 2022, 71, 6214–6227. [Google Scholar] [CrossRef]
- Romero-Jerez, J.M.; Lopez-Martinez, F.J.; Paris, J.F.; Goldsmith, A.J. The fluctuating two-ray fading model: Statistical characterization and performance analysis. IEEE Trans. Wirel. Commun. 2017, 16, 4420–4432. [Google Scholar] [CrossRef] [Green Version]
- Romero-Jerez, J.M.; Lopez-Martinez, F.J.; Peña-Martín, J.P.; Abdi, A. Stochastic fading channel models with multiple dominant specular components. IEEE Trans. Veh. Technol. 2022, 71, 2229–2239. [Google Scholar] [CrossRef]
- Peppas, K.; Nistazakis, H.; Tombras, G. An Overview of the Physical Insight and the Various Performance Metrics of Fading Channels in Wireless Communication Systems. In Advanced Trends in Wireless Communications; IntechOpen Limited: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Rice, S.O. Mathematical analysis of random noise. Bell Syst. Tech. J. 1944, 23, 282–332. [Google Scholar] [CrossRef]
- Andersen, J.B. Statistical distributions in mobile communications using multiple scattering. In Proceedings of the 27th URSI General Assembly, Maastricht, The Netherlands, 17 – 24 August 2002; pp. 1–4. [Google Scholar]
- Salo, J.; Salmi, J.; Vainikainen, P. Distribution of the amplitude of a sum of singly and doubly scattered fading radio signal. In Proceedings of the 2005 IEEE 61st Vehicular Technology Conference, Stockholm, Sweden, 30 May–1 June 2005; Volume 1, pp. 87–91. [Google Scholar] [CrossRef]
- Sánchez, J.D.V.; Osorio, D.P.M.; López-Martínez, F.J.; Paredes, M.C.P.; Urquiza-Aguiar, L.F. On the secrecy performance over N-wave with diffuse power fading channel. IEEE Trans. Veh. Technol. 2020, 69, 15137–15148. [Google Scholar] [CrossRef]
- Lopez-Fernandez, J.; Lopez-Martinez, F.J. Statistical Characterization of Second-Order Scattering Fading Channels. IEEE Trans. Veh. Technol. 2018, 67, 11345–11353. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Fernandez, J.; Lopez-Martinez, F.J. New Results on the Second Order Scattering Fading Model: Amount of Fading and Energy Detection. IEEE Trans. Veh. Technol. 2020, 69, 1037–1040. [Google Scholar] [CrossRef]
- Salo, J.; El-Sallabi, H.; Vainikainen, P. Impact of double-Rayleigh fading on system performance. In Proceedings of the 2006 1st International Symposium on Wireless Pervasive Computing, Phuket, Thailand, 16–18 January 2006; p. 5. [Google Scholar] [CrossRef]
- Pandey, A.; Yadav, S. Physical Layer Security in Cooperative AF Relaying Networks With Direct Links Over Mixed Rayleigh and Double-Rayleigh Fading Channels. IEEE Trans. Veh. Technol. 2018, 67, 10615–10630. [Google Scholar] [CrossRef]
- Pandey, A.; Yadav, S.; Do, D.T.; Kharel, R. Secrecy Performance of Cooperative Cognitive AF Relaying Networks With Direct Links Over Mixed Rayleigh and Double-Rayleigh Fading Channels. IEEE Trans. Veh. Technol. 2020, 69, 15095–15112. [Google Scholar] [CrossRef]
- Lopez-Fernandez, J.; Espinosa, P.R.; Romero-Jerez, J.M.; Lopez-Martinez, F.J. A Fluctuating Line-of-Sight Fading Model With Double-Rayleigh Diffuse Scattering. IEEE Trans. Veh. Technol. 2022, 71, 1000–1003. [Google Scholar] [CrossRef]
- Olutayo, A.; Cheng, J.; Holzman, J.F. A new statistical channel model for emerging wireless communication systems. IEEE Open J. Commun. Soc. 2020, 1, 916–926. [Google Scholar] [CrossRef]
- Samimi, M.K.; MacCartney, G.R.; Sun, S.; Rappaport, T.S. 28 GHz millimeter-wave ultrawideband small-scale fading models in wireless channels. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 15–18 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar]
- Gvozdarev, A.S. Closed-Form and Asymptotic BER Analysis of the Fluctuating Double-Rayleigh With Line-of-Sight Fading Channel. IEEE Wirel. Commun. Lett. 2022, 11, 1548–1552. [Google Scholar] [CrossRef]
- Gvozdarev, A.S. Capacity analysis of the fluctuating double-Rayleigh with line-of-sight fading channel. Phys. Commun. 2022, 55, 101939. [Google Scholar] [CrossRef]
- Peppas, K.; Stassinakis, A.; Topalis, G.; Nistazakis, H.; Tombras, G. Average Capacity of Optical Wireless Communication Systems Over I-K Atmospheric Turbulence Channels. J. Opt. Commun. Netw. 2012, 4, 1026–1032. [Google Scholar] [CrossRef]
- Jurado-Navas, A.; Garrido-Balsells, J.; Paris, J.; Puerta-Notario, A. A Unifying Statistical Model for Atmospheric Optical Scintillation. In Numerical Simulations of Physical and Engineering Processes; IntechOpen Limited: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Esmail, M. Experimental performance evaluation of weak turbulence channel models for FSO links. Opt. Commun. 2021, 486, 126776. [Google Scholar] [CrossRef]
- Magidi, S.; Jabeena, A. Free Space Optics, Channel Models and Hybrid Modulation Schemes: A Review. Wirel. Pers. Commun. 2021, 119, 2951–2974. [Google Scholar] [CrossRef]
- Andrews, L.C.; Phillips, R.L. I-K distribution as a universal propagation model of laser beams in atmospheric turbulence. J. Opt. Soc. Am. A 1985, 2, 160–163. [Google Scholar] [CrossRef]
- Andrews, L.C.; Phillips, R.L. Mathematical genesis of the I-K distribution for random optical fields. J. Opt. Soc. Am. A 1985, 11, 1912–1919. [Google Scholar] [CrossRef]
- Churnside, J.H.; Frehlich, R.G. Experimental evaluation of lognormally modulated Rician and IK models of optical scintillation in the atmosphere. J. Opt. Soc. Am. A 1989, 1, 1760–1766. [Google Scholar] [CrossRef]
- Frolik, J. A case for considering hyper-Rayleigh fading channels. IEEE Trans. Wirel. Commun. 2007, 6, 1235–1239. [Google Scholar] [CrossRef]
- Frolik, J. On appropriate models for characterizing hyper-Rayleigh fading. IEEE Trans. Wirel. Commun. 2008, 7, 5202–5207. [Google Scholar] [CrossRef]
- Rao, M.; Lopez-Martinez, F.J.; Alouini, M.S.; Goldsmith, A. MGF approach to the analysis of generalized two-ray fading models. IEEE Trans. Wirel. Commun. 2015, 14, 2548–2561. [Google Scholar]
- Matolak, D.W.; Frolik, J. Worse-than-Rayleigh fading: Experimental results and theoretical models. IEEE Commun. Mag. 2011, 49, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Sen, I.; Matolak, D.; Xiong, W. Wireless channels that exhibit” Worse than Rayleigh” fading: Analytical and measurement results. In Proceedings of the MILCOM 2006—2006 IEEE Military Communications Conference, Washington, DC, USA, 23–25 October 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 1–7. [Google Scholar]
- Frolik, J. A practical metric for fading environments. IEEE Wirel. Commun. Lett. 2013, 2, 195–198. [Google Scholar] [CrossRef]
- Romero-Jerez, J.M.; Lopez-Martinez, F.J. A new framework for the performance analysis of wireless communications under hoyt (Nakagami-q) Fading. IEEE Trans. Inf. Theory 2017, 63, 1693–1702. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Corrales, C.; Fernandez-Plazaola, U.; Canete, F.J.; Paris, J.F.; Lopez-Martinez, F.J. Unveiling the Hyper-Rayleigh Regime of the Fluctuating Two-Ray Fading Model. IEEE Access 2019, 7, 75367–75377. [Google Scholar] [CrossRef]
- Zeng, W.; Zhang, J.; Chen, S.; Peppas, K.P.; Ai, B. Physical layer security over fluctuating two-ray fading channels. IEEE Trans. Veh. Technol. 2018, 67, 8949–8953. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Yang, L.; Pan, G.; Alouini, M.S. Secrecy outage analysis over fluctuating two-ray fading channels. Electron. Lett. 2019, 55, 866–868. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Ai, Y.; Lei, L.; Kaddoum, G.; Chatzinotas, S.; Ottersten, B. An overview of generic tools for information-theoretic secrecy performance analysis over wiretap fading channels. EURASIP J. Wirel. Commun. Netw. 2021, 2021, 194. [Google Scholar] [CrossRef]
- Hamamreh, J.M.; Furqan, H.M.; Arslan, H. Classifications and applications of physical layer security techniques for confidentiality: A comprehensive survey. IEEE Commun. Surv. Tutor. 2018, 21, 1773–1828. [Google Scholar] [CrossRef]
- Sánchez, J.D.V.; Urquiza-Aguiar, L.; Paredes, M.C.P.; Osorio, D.P.M. Survey on physical layer security for 5G wireless networks. Ann. Telecommun. 2021, 76, 155–174. [Google Scholar] [CrossRef]
- Wu, Y.; Khisti, A.; Xiao, C.; Caire, G.; Wong, K.K.; Gao, X. A survey of physical layer security techniques for 5G wireless networks and challenges ahead. IEEE J. Sel. Areas Commun. 2018, 36, 679–695. [Google Scholar] [CrossRef] [Green Version]
- Barros, J.; Rodrigues, M.R. Secrecy capacity of wireless channels. In Proceedings of the 2006 IEEE International Symposium on Information Theory, Seattle, WA, USA, 9–14 July 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 356–360. [Google Scholar]
- Hyadi, A.; Rezki, Z.; Alouini, M.S. An overview of physical layer security in wireless communication systems with CSIT uncertainty. IEEE Access 2016, 4, 6121–6132. [Google Scholar] [CrossRef] [Green Version]
- Zöchmann, E.; Caban, S.; Mecklenbräuker, C.F.; Pratschner, S.; Lerch, M.; Schwarz, S.; Rupp, M. Better than Rician: Modelling millimetre wave channels as two-wave with diffuse power. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 21. [Google Scholar] [CrossRef] [Green Version]
- Reig, J.; Peñarrocha, V.M.R.; Rubio, L.; Martínez-Inglés, M.T.; Molina-García-Pardo, J.M. The folded normal distribution: A new model for the small-scale fading in line-of-sight (LOS) condition. IEEE Access 2019, 7, 77328–77339. [Google Scholar] [CrossRef]
- Cotton, S.L. A statistical model for shadowed body-centric communications channels: Theory and validation. IEEE Trans. Antennas Propag. 2013, 62, 1416–1424. [Google Scholar] [CrossRef] [Green Version]
- Chizhik, D.; Foschini, G.; Valenzuela, R. Capacities of multi-element transmit and receive antennas: Correlations and keyholes. Electron. Lett. 2000, 36, 1. [Google Scholar] [CrossRef]
- Tao, Q.; Wang, J.; Zhong, C. Performance analysis of intelligent reflecting surface aided communication systems. IEEE Commun. Lett. 2020, 24, 2464–2468. [Google Scholar] [CrossRef]
- Bandemer, B.; Oestges, C.; Czink, N.; Paulraj, A. Physically motivated fast-fading model for indoor peer-to-peer channels. Electron. Lett. 2009, 45, 515–517. [Google Scholar] [CrossRef]
- Oestges, C.; Czink, N.; Bandemer, B.; Castiglione, P.; Kaltenberger, F.; Paulraj, A.J. Experimental characterization and modeling of outdoor-to-indoor and indoor-to-indoor distributed channels. IEEE Trans. Veh. Technol. 2010, 59, 2253–2265. [Google Scholar] [CrossRef] [Green Version]
- Vinogradov, E.; Joseph, W.; Oestges, C. Measurement-based modeling of time-variant fading statistics in indoor peer-to-peer scenarios. IEEE Trans. Antennas Propag. 2015, 63, 2252–2263. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhong, Z.; He, R.; Tufvesson, F.; Ai, B. Measurement-based multiple-scattering model of small-scale fading in high-speed railway cutting scenarios. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 1427–1430. [Google Scholar] [CrossRef]
- Simon, M.K.; Alouini, M.S. Digital Communication Over Fading Channels; Wiley-Interscience: Hoboken, NJ, USA, 2005; p. 900. [Google Scholar]
- Wyner, A.D. The wire-tap channel. Bell Syst. Tech. J. 1975, 54, 1355–1387. [Google Scholar] [CrossRef]
- Olver, F.W.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Lee, W. Estimate of channel capacity in Rayleigh fading environment. IEEE Trans. Veh. Technol. 1990, 39, 187–189. [Google Scholar] [CrossRef]
- Alouini, M.S.; Goldsmith, A. Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques. IEEE Trans. Veh. Technol. 1999, 48, 1165–1181. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Liang, J.; Kim, M.D.; Park, J.J.; Park, B.; Chung, H.K. Measurement-Based Propagation Channel Characteristics for Millimeter-Wave 5G Giga Communication Systems. ETRI J. 2016, 38, 1031–1041. [Google Scholar] [CrossRef]
- Zhou, T.; Tao, C.; Salous, S.; Liu, L.; Tan, Z. Channel characterization in high-speed railway station environments at 1.89 GHz. Radio Sci. 2015, 50, 1176–1186. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liu, S.; Lu, J.; Fan, P.; Letaief, K.B. Smart Channel Sounder for 5G IoT: From Wireless Big Data to Active Communication. IEEE Access 2016, 4, 8888–8899. [Google Scholar] [CrossRef]
- Shi, B.; Pallotta, L.; Giunta, G.; Hao, C.; Orlando, D. Parameter Estimation of Fluctuating Two-Ray Model for Next Generation Mobile Communications. IEEE Trans. Veh. Technol. 2020, 69, 8684–8697. [Google Scholar] [CrossRef]
- Bender, C.M.; Orszag, S.A. Advanced Mathematical Methods for Scientists and Engineers I; Springer: New York, NY, USA, 1999. [Google Scholar] [CrossRef]
- Maccartney, G.R.; Rappaport, T.S.; Sun, S.; Deng, S. Indoor Office Wideband Millimeter-Wave Propagation Measurements and Channel Models at 28 and 73 GHz for Ultra-Dense 5G Wireless Networks. IEEE Access 2015, 3, 2388–2424. [Google Scholar] [CrossRef]
- Adegoke, E.I.; Kampert, E.; Higgins, M.D. Channel Modeling and Over-the-Air Signal Quality at 3.5 GHz for 5G New Radio. IEEE Access 2021, 9, 11183–11193. [Google Scholar] [CrossRef]
- Tai, I.H.P.; Lim, H.S.; Diong, K.S.; Alaghbari, K.A. Effects of Crowd Density on Radio Propagation at 24 GHz in a Pedestrian Tunnel for 5G Communications. IEEE Access 2023, 11, 40240–40248. [Google Scholar] [CrossRef]
- Márton, M.; Ovseník, L.; Špes, M. Measurement effect of visibility in experimental FSO system. In Proceedings of the 2017 IEEE 14th International Scientific Conference on Informatics, Poprad, Slovakia, 14–16 November 2017; pp. 249–252. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series: Direct Laplace Transforms; Gordon and Breach Science Publishers: New York, NY, USA, 1992; Volume 4, p. 619. [Google Scholar]
Parameter | Parameter Value |
---|---|
Shadowing coefficient (m) | |
Rician K-factor (k) | |
Average SNR (), dB | |
Threshold SNR (), dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gvozdarev, A.S.; Artemova, T.K.; Alishchuk, A.M.; Kazakova, M.A. Closed-Form Hyper-Rayleigh Mode Analysis of the Fluctuating Double-Rayleigh with Line-of-Sight Fading Channel. Inventions 2023, 8, 87. https://doi.org/10.3390/inventions8040087
Gvozdarev AS, Artemova TK, Alishchuk AM, Kazakova MA. Closed-Form Hyper-Rayleigh Mode Analysis of the Fluctuating Double-Rayleigh with Line-of-Sight Fading Channel. Inventions. 2023; 8(4):87. https://doi.org/10.3390/inventions8040087
Chicago/Turabian StyleGvozdarev, Aleksey S., Tatiana K. Artemova, Aleksandra M. Alishchuk, and Marina A. Kazakova. 2023. "Closed-Form Hyper-Rayleigh Mode Analysis of the Fluctuating Double-Rayleigh with Line-of-Sight Fading Channel" Inventions 8, no. 4: 87. https://doi.org/10.3390/inventions8040087
APA StyleGvozdarev, A. S., Artemova, T. K., Alishchuk, A. M., & Kazakova, M. A. (2023). Closed-Form Hyper-Rayleigh Mode Analysis of the Fluctuating Double-Rayleigh with Line-of-Sight Fading Channel. Inventions, 8(4), 87. https://doi.org/10.3390/inventions8040087