# A New Maximum Power Point Tracking Technique for Thermoelectric Generator Modules

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Modeling a Thermoelectric Generator

_{int}) [12]. A load R is connected to the TEG terminal. So, the voltage equation is expressed as the following [11]:

_{MPP}) where [11]:

## 3. DC/DC Boost Converter

_{ON}) to the overall switching period (T

_{ON}+ T

_{OFF}).

## 4. MPPT Technique for the Thermoelectric Generator

## 5. Simulation Results and Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Emin, D. Seebeck Effect; Wiely Online Library: Hoboken, NJ, USA, 2014; pp. 1–14. [Google Scholar] [CrossRef]
- Siouane, S.; Jovanović, S.; Poure, P. Equivalent Electrical Circuits of Thermoelectric Generators under Different Operating Conditions. Energies
**2017**, 10, 386. [Google Scholar] [CrossRef] [Green Version] - Thermoelectric Generator. Wikipedia, the Free Encyclopedia. Available online: https://en.wikipedia.org/wiki/Thermoelectric_generator (accessed on 18 October 2021).
- Patel, D.; Mehta, S.B.; Shah, P. Review of Thermoelectricity to Improve Energy Quality. J. Emerg. Technol. Innov. Res.
**2015**, 2, 847–850. [Google Scholar] - Khamil, K.N.; Sabri, M.F.M.; Yusop, A.M.; Mohamed, R.; Sharuddin, M.S. Modelling and Simulation of the Performance Analysis for Peltier Module and Seebeck Module using MATLAB/Simulink. J. Kejuruter.
**2020**, 32, 231–238. [Google Scholar] - Bijukumar, B.; Ilango, G.S.; Nagamani, C. Design and implementation of a current controlled grid connected inverter for thermoelectric generator sources. J. Sådhanå Indian Acad. Sci.
**2020**, 45, 1–13. [Google Scholar] [CrossRef] - Belkaid, A.; Colak, I.; Kayisli, K. Modeling and Simulation of Thermo Electrical Generatror with MPPT. In Proceedings of the 6th International Conference on Renewable Energy Research and Applications, San Diego, CA, USA, 5–8 November 2017; pp. 855–860. [Google Scholar]
- Kanagaraj, N.; Rezk, H.; Gomaa, M.R. A Variable Fractional Order Fuzzy Logic Control Based MPPT Technique for Improving Energy Conversion Effeciency of Thermoelectric Power Generator. Energies
**2020**, 13, 4531. [Google Scholar] [CrossRef] - Zoui, M.A.; Bentouba, S.; Stocholm, J.G.; Bourouis, M. A Review on Thermoelectric Generators: Progress and Applications. Energies
**2020**, 13, 3606. [Google Scholar] [CrossRef] - Electrical4U. Seebeck Effect and Seebeck Coefficient. Last Updated in 25 July 2018. Available online: https://www.electrical4u.com/seebeck-effect-and-seebeck-coefficient/ (accessed on 18 October 2021).
- Champier, D. Thermoelectric generators: A review of applications. Energy Convers. Manag.
**2017**, 140, 167–181. [Google Scholar] [CrossRef] - Mamur, H.; Çoban, Y. Detailed modeling of a thermoelectric generator for maximum power point tracking. Turk. J. Electr. Eng. Comput. Sci.
**2020**, 28, 124–139. [Google Scholar] [CrossRef] - Marlow Industries, Inc. SP1848 Thermoelectric Cooler. Available online: https://www.alldatasheet.com/datasheet-pdf/pdf/164951/ETC1/SP1848.html (accessed on 10 November 2021).
- Bimbhra, P.S. Power Electronics, 4th ed.; 15th reprint; Khanna Publishers: Delhi, India, 2010. [Google Scholar]
- De Brito, M.A.G.; Sampaio, L.P.; Luigi, G.; e Melo, G.A.; Canesin, C.A. Comparative Analysis of MPPT Techniques for PV Applications. In Proceedings of the 2011 International Conference on Clean Electrical Power (ICCEP), Ischia, Italy, 14–16 June 2011. [Google Scholar]
- Mendel, J.M. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions; Prentice Hall PTR: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Taskin, A.; Kumbasar, T. An Open Source Matlab/Simulink Toolbox for Interval Type-2 Fuzzy Logic Systems. In Proceedings of the 2015 IEEE Symposium Series on Computational Intelligence, Cape Town, South Africa, 7–10 December 2015; pp. 1561–1568. [Google Scholar]
- Gagliano, S.; Cairone, F.; Amenta, A.; Bucolo, M. A Real Time Feed Forward Control of Slug Flow in Microchannels †. Energies
**2019**, 12, 2556. [Google Scholar] [CrossRef] [Green Version]

**Figure 2.**P-V curve of the proposed thermoelectric generator (SP1848) at various temperature differences.

Specifications | Quantity/Value |
---|---|

No. of TEGs per Module | 204 |

Seebeck Coefficient per Single TEG | 400 μV/K |

Internal Resistance (R_{int}) of a Single TEG | 0.323 Ω |

FIS Variable | Values (Linear) |
---|---|

NB | [0 0 -0.0075] |

NM | [0 0 -0.003667] |

NS | [0 0 -0.001667] |

ZE | [0 0 -2.385 × 10^{−19}] |

PS | [0 0 0.001667] |

PM | [0 0 0.003667] |

PB | [0 0 0.0075] |

Change (P) | |||||||
---|---|---|---|---|---|---|---|

Change (I) | NB | NM | NS | ZE | PS | PM | PB |

NB | PB | PB | PM | NM | NM | NB | NB |

NS | PB | PM | PS | NS | NS | NM | NB |

ZE | NB | NM | NS | ZE | PS | PM | PB |

PS | NB | NM | NS | PS | PS | PM | PB |

PB | NB | NB | NM | PM | PM | PB | PB |

Load | 100 Ω | 50 Ω | 25 Ω | 12 Ω | 6 Ω | |
---|---|---|---|---|---|---|

D = 10% | Input Power (W) | 578.5 | 488.9 | 339.2 | 199 | 111.1 |

D = 20% | Input Power (W) | 578.5 | 488.9 | 339.2 | 199 | 111.1 |

D = 30% | Input Power (W) | 464.6 | 313.1 | 186.1 | 99.2 | 53 |

D = 40% | Input Power (W) | 464.6 | 313.1 | 186.1 | 99.2 | 53 |

D = 50% | Input Power (W) | 464.6 | 313.1 | 186.1 | 99.2 | 53 |

D = 60% | Input Power (W) | 185.1 | 101.8 | 53.9 | 27.2 | 14.4 |

D = 70% | Input Power (W) | 184 | 101.8 | 53.9 | 27.2 | 14.4 |

D = 80% | Input Power (W) | 0.212 | 0.212 | 0.212 | 0.212 | 0.212 |

Output Power at IT2FLC MPPT (W) | 581.4 | 511 | 368.2 | 220.5 | 124.5 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

A. Qasim, M.; T. Alwan, N.; PraveenKumar, S.; Velkin, V.I.; Agyekum, E.B.
A New Maximum Power Point Tracking Technique for Thermoelectric Generator Modules. *Inventions* **2021**, *6*, 88.
https://doi.org/10.3390/inventions6040088

**AMA Style**

A. Qasim M, T. Alwan N, PraveenKumar S, Velkin VI, Agyekum EB.
A New Maximum Power Point Tracking Technique for Thermoelectric Generator Modules. *Inventions*. 2021; 6(4):88.
https://doi.org/10.3390/inventions6040088

**Chicago/Turabian Style**

A. Qasim, Mohammed, Naseer T. Alwan, Seepana PraveenKumar, Vladimir I. Velkin, and Ephraim Bonah Agyekum.
2021. "A New Maximum Power Point Tracking Technique for Thermoelectric Generator Modules" *Inventions* 6, no. 4: 88.
https://doi.org/10.3390/inventions6040088