Assessment of the Wind Energy Potential along the Romanian Coastal Zone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Target Area
2.2. Wind Dataset
2.3. Wind Turbines
3. Results
3.1. Analysis of the Wind Resources
3.2. Evaluation of the Wind Turbine Performances
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. A Clean Planet for All. A European Strategic Long–Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy. In Depth Analysis in Support of the Commission Communication; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Future of Wind. Deployment, Investment, Technology, Grid Integration and Socio–Economic Aspects. Available online: https://irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019 (accessed on 15 May 2021).
- Onea, F.; Rusu, E. A Study on the Wind Energy Potential in the Romanian Coastal Environment. J. Mar. Sci. Eng. 2019, 7, 142. [Google Scholar] [CrossRef] [Green Version]
- Raileanu, A.; Onea, F.; Rusu, E. An Overview of the Expected Shoreline Impact of the Marine Energy Farms Operating in Different Coastal Environments. J. Mar. Sci. Eng. 2020, 8, 228. [Google Scholar] [CrossRef] [Green Version]
- Rusu, E. An Evaluation of the Wind Energy Dynamics in the Baltic Sea, Past and Future Projections. Renew. Energy 2020, 160, 350–362. [Google Scholar] [CrossRef]
- Rusu, E.; Onea, F. An Assessment of the Wind and Wave Power Potential in the Island Environment. Energy 2019, 175, 830–846. [Google Scholar] [CrossRef]
- NECP. Planul National Integrat in Domeniul Energiei Si Schimbarilor Climatice 2021–2030. COM, Romania. 2020. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/ro_final_necp_main_ro.pdf (accessed on 25 May 2021).
- Dragomir, G.; Serban, A.; Nastase, G.; Brezeanu, A.I. Wind Energy in Romania: A Review from 2009 to 2016. Renew. Sustain. Energy Rev. 2016, 64, 129–143. [Google Scholar] [CrossRef]
- Rusu, L.; Raileanu, A.; Onea, F. A Comparative Analysis of the Wind and Wave Climate in the Black Sea along the Shipping Routes. Water 2018, 10, 924. [Google Scholar] [CrossRef] [Green Version]
- Ganea, D.; Mereuta, E.; Rusu, L. Estimation of the Near Future Wind Power Potential in the Black Sea. Energies 2018, 11, 3198. [Google Scholar] [CrossRef] [Green Version]
- Rusu, E. A 30–Year Projection of the Future Wind Energy Resources in the Coastal Environment of the Black Sea. Renew. Energy 2019, 139, 2283. [Google Scholar] [CrossRef]
- Onea, F.; Rusu, E. Efficiency Assessments for Some State-of-the-Art Wind Turbines in the Coastal Environments of the Black and the Caspian Seas. Energy Explor. Exploit. 2016, 34, 217–234. [Google Scholar] [CrossRef] [Green Version]
- Onea, F.; Rusu, E. Wind Energy Assessments along the Black Sea Basin. Meteorol. Appl. 2014, 21, 316–329. [Google Scholar] [CrossRef]
- Onea, F.; Rusu, L. Evaluation of Some State-Of-The-Art Wind Technologies in the Nearshore of the Black Sea. Energies 2018, 11, 2452. [Google Scholar] [CrossRef] [Green Version]
- Argin, M.; Yerci, V. The Assessment of Offshore Wind Power Potential of Turkey. In Proceedings of the 2015 9th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 26–28 November 2015; pp. 966–970. [Google Scholar]
- Raileanu, A.B.; Onea, F.; Rusu, E. Evaluation of the Offshore Wind Resources in the European Seas Based on Satellite Measurements. In Proceedings of the International Multidisciplinary Scientific Geo Conference SGEM, Albena, Bulgaria, 16–25 June 2015; pp. 227–234. [Google Scholar]
- Onea, F.; Rusu, L. An Evaluation of the Wind Energy in the North-West of the Black Sea. Int. J. Green Energy 2014, 11, 465–487. [Google Scholar] [CrossRef]
- IEA. Offshore Wind Outlook 2019, Paris. Available online: https://www.Iea.Org/Reports/Offshore-Wind-Outlook-2019 (accessed on 15 May 2021).
- WindEurope. Offshore Wind in Europe—Key Trends and Statistics. 2019. Available online: https://www.iea.org/reports/offshore-wind-outlook-2019 (accessed on 15 May 2021).
- Romania’s Offshore Wind Energy Resources: Natural Potential, Regulatory Framework, and Development Prospects; EPG: Bucharest, Romania, 2020.
- Onea, F.; Rusu, L. Offshore Wind Energy and the Romanian Energy Future. E3S Web Conf. ICACER 2019, 103, 001004. [Google Scholar] [CrossRef]
- Onea, F.; Rusu, L. Assessment of the Romanian Onshore and Offshore Wind Energy Potential. E3S Web Conf. REEE 2019, 122, 01003. [Google Scholar] [CrossRef]
- Girleanu, A.; Onea, F.; Rusu, E. The Efficiency and Coastal Protection Provided by a Floating Wind Farm Operating in the Romanian Nearshore. In Proceedings of the 6th International Conference on Clean Energy Research, ICACER 2021, Barcelona, Spain, 15–17 April 2021. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Horanyi, A.; Sabater, J.M.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global reanalysis: Goodbye ERA–Interim, hello ERA5. ECMWF Newsl. 2019, 159, 17–24. [Google Scholar]
- WindEurope. Offshore Wind in Europe—Key Trends and Statistics. 2020. Available online: https://windeurope.org/intelligence-platform/product/offshore-wind-in-europe-key-trends-and-statistics-2020/ (accessed on 15 May 2021).
- Welcome to Wind-Turbine-Models. Available online: https://en.wind-turbine-models.com/ (accessed on 1 June 2021).
- Wen, Y.; Kamranzad, B.; Lin, P. Assessment of Long-Term Offshore Wind Energy Potential in the South and Southeast Coasts of China Based on a 55-Year Dataset. Energy 2021, 224, 120225. [Google Scholar] [CrossRef]
- Salvacao, N.; Guesdes Soares, C. Wind Resource Assessment Offshore the Atlantic Iberian Coast with the WRF Model. Energy 2018, 145, 276–287. [Google Scholar] [CrossRef]
- Al–Nasaar, W.K.; Neelamani, S.; Al-Salem, K.A.; Al–Dashti, H.A. Feasibility of Offshore Wind Energy as a Model. Energy 2019, 169, 783–796. [Google Scholar] [CrossRef]
- Project Description—Wind Parks Mihai Viteazu I–IV (80 MW); Nek Umwelttechnik AG: Constanta, Romania, 2010.
- Oh, K.Y.; Kim, J.Y.; Lee, J.K.; Ryu, M.S.; Lee, J.S. An Assessment of Wind Energy Potential at the Demonstration Offshore Wind Farm in Korea. Energy 2020, 46, 555–563. [Google Scholar] [CrossRef]
- Xie, K.; Yang, H.; Hu, B.; Li, C. Optimal Layout of a Wind Farm Considering Multiple Wind Directions. In Proceedings of the 2014 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Durham, UK, 7–10 July 2014. [Google Scholar]
- Statistical Review of World Energy. Energy Economics. Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (accessed on 19 March 2021).
- Girleanu, A.; Rusu, E.; Onea, F. An Insight into the Energy Market in the Context of Climate Change and the European Gre Green Deal. In Proceedings of the International Multidisciplinary Scientific GeoConference SGEM, Albena, Bulgaria, 2021. under review. [Google Scholar]
- Kalverla, P.C.; Holtslag, A.A.M.; Ronda, R.J.; Steeneveld, G.J. Quality of Wind Characteristics in Recent Wind Atlases over the North Sea. Meteorol. Soc. 2020, 146, 1498–1515. [Google Scholar] [CrossRef]
- Onea, F.; Rusu, L. Long–Term Analysis of the Black Sea Weather Windows. J. Mar. Sci. Eng. 2019, 7, 303. [Google Scholar] [CrossRef] [Green Version]
- ERA5: How Are the 100m Winds Calculated, Copernicus User Support Forum—ECMWF Confluence Wiki. Available online: https://confluence.ecmwf.int/ (accessed on 29 April 2021).
- Raileanu, A.; Onea, F.; Rusu, E. Implementation of Offshore Wind Turbines to Reduce Air Pollution in Coastal Areas—A Case Study of Constanta Harbour in the Black Sea. J. Mar. Sci. Eng. 2020, 7, 550. [Google Scholar] [CrossRef]
ID | Location | Long (°) | Lat (°) | Distance to Shore (km) | Height/Depth (m) |
---|---|---|---|---|---|
A1 | Land | 28.899 | 45.084 | 60 | 68 |
A2 | Shoreline | 29.635 | 44.952 | 0 | 0 |
A3 | Offshore | 30.247 | 44.837 | 49 | −50 |
A4 | Offshore | 30.839 | 44.716 | 100 | −81 |
B1 | Land | 28.309 | 44.800 | 57 | 185 |
B2 | Shoreline | 29.015 | 44.683 | 0 | 0 |
B3 | Offshore | 29.680 | 44.569 | 55 | −61 |
B4 | Offshore | 30.478 | 44.438 | 118 | −84 |
C1 | Land | 27.960 | 44.471 | 60 | 11 |
C2 | Shoreline | 28.693 | 44.351 | 0 | 0 |
C3 | Offshore | 29.377 | 44.250 | 56 | −51 |
C4 | Offshore | 30.114 | 44.122 | 115 | −89 |
D1 | Land | 27.942 | 44.081 | 60 | 145 |
D2 | Shoreline | 28.675 | 43.976 | 0 | 0 |
D3 | Offshore | 29.179 | 43.916 | 43 | −51 |
D4 | Offshore | 29.755 | 43.841 | 90 | −83 |
ID | Turbine | Power (MW) | Cut–in Speed (m/s) | Rated Speed (m/s) | Cut–out Speed (m/s) | Hub Height (m) |
---|---|---|---|---|---|---|
T1 | V100–2.0 | 2.00 | 3.00 | 12 | 22 | 100 |
T2 | V100–3.0 | 3.00 | 4.00 | 15 | 25 | 100 |
T3 | SWT–2.3–93 | 2.30 | 4.00 | 13 | 25 | 100 |
T4 | SWT–3.6–120 | 3.60 | 3.50 | 12 | 25 | 100 |
T5 | SWT–4.0–130 | 4.00 | 5.00 | 12 | 25 | 100 |
T6 | SWT–7.0–154 | 7.00 | 3.00 | 13 | 25 | 100 |
T7 | REpower5M | 5.075 | 3.50 | 14 | 25 | 100 |
T8 | REpower6M | 6.15 | 3.50 | 14 | 25 | 100 |
T9 | Nordex N90/2500 | 2.50 | 3.00 | 13.50 | 25 | 100 |
T10 | AREVA M5000–116 | 5.00 | 4.00 | 12.50 | 25 | 100 |
T11 | Samsung S7.0–171 | 7.00 | 3.00 | 11.50 | 25 | 100 |
T12 | AMSC wt10000dd SeaTitan | 10.00 | 4.00 | 11.50 | 25 | 100 |
Site | A1 | A2 | A3 | A4 | B1 | B2 | B3 | B4 |
k (m/s) | 7.04 | 7.49 | 7.81 | 7.92 | 7.06 | 7.38 | 7.75 | 7.87 |
c | 2.03 | 2.08 | 2.10 | 2.09 | 2.02 | 2.06 | 2.10 | 2.10 |
Site | C1 | C2 | C3 | C4 | D1 | D2 | D3 | D4 |
k (m/s) | 7.12 | 7.38 | 7.82 | 7.82 | 7.20 | 7.46 | 7.70 | 7.80 |
c | 2.01 | 2.10 | 2.04 | 2.11 | 2.08 | 2.06 | 2.10 | 2.11 |
Wind Class | 100 m Reference Height | |
---|---|---|
Power Density (W/m2) | Wind Speed (m/s) | |
C1 (poor) | <260 | <6.1 |
C2 (marginal) | 260–420 | 6.1–7.1 |
C3 (fair) | 420–560 | 7.1–7.8 |
C4 (good) | 560–670 | 7.8–8.3 |
C5 (excellent) | 670–820 | 8.3–8.9 |
C6 (outstanding) | 820–1060 | 8.9–9.7 |
C7 (superb) | >1060 | >9.7 |
Site/Turbine | A3—T11 | A4—T11 | B4—T11 | C3—T11 | C4—T11 |
Capacity factor (%) | 41.20 | 41.20 | 40.80 | 40.50 | 40.40 |
Site/Turbine | A3—T12 | A4—T12 | B4—T12 | C3—T12 | C4—T12 |
AEP (GWh) | 33.80 | 33.80 | 33.40 | 33.20 | 33.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girleanu, A.; Onea, F.; Rusu, E. Assessment of the Wind Energy Potential along the Romanian Coastal Zone. Inventions 2021, 6, 41. https://doi.org/10.3390/inventions6020041
Girleanu A, Onea F, Rusu E. Assessment of the Wind Energy Potential along the Romanian Coastal Zone. Inventions. 2021; 6(2):41. https://doi.org/10.3390/inventions6020041
Chicago/Turabian StyleGirleanu, Alina, Florin Onea, and Eugen Rusu. 2021. "Assessment of the Wind Energy Potential along the Romanian Coastal Zone" Inventions 6, no. 2: 41. https://doi.org/10.3390/inventions6020041
APA StyleGirleanu, A., Onea, F., & Rusu, E. (2021). Assessment of the Wind Energy Potential along the Romanian Coastal Zone. Inventions, 6(2), 41. https://doi.org/10.3390/inventions6020041