Human Gender Classification Using Transfer Learning via Pareto Frontier CNN Networks
Abstract
:1. Introduction
2. Background and Related Work
3. Methods
3.1. Convolutional Neural Networks
3.2. Transfer Learning
3.3. Pareto Frontier Networks
3.4. Pre-Trained Deep Learning Networks
4. Experiments and Results
4.1. Training Dataset
4.2. Experiments
4.3. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eidinger, E.; Enbar, R.; Hassner, T. Age and gender estimation of unfiltered faces. IEEE Trans. Inf. Forensics Secur. 2014, 9, 2170–2179. [Google Scholar] [CrossRef]
- Liu, C.; Wechsler, H. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans. Image Process. 2002, 11, 467–476. [Google Scholar] [PubMed] [Green Version]
- Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep learning face attributes in the wild. In Proceedings of the International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3730–3738. [Google Scholar]
- Zhang, N.; Paluri, M.; Ranzato, M.; Darrell, T.; Bourdev, L. PANDA: Pose aligned networks for deep attribute modeling. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 1637–1644. [Google Scholar]
- Levi, G.; Hassner, T. Age and Gender Classification using Convolutional Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 7–12 June 2015; pp. 34–42. [Google Scholar]
- Christian, S.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Iandola, N.; Forrest, S.; Han, M.; Moskewicz, W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Rothe, R.; Timofte, R.; Gool, L.V. DEX: Deep EXpectation of apparent age from a single image. In Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Moghaddam, B.; Yang, M.H. Learning gender with support faces. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 707–711. [Google Scholar] [CrossRef] [Green Version]
- Makinen, E.; Raisamo, R. Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Tan, T.; Huang, K.; Jia, K.; Wu, X. A study on gait-based gender classification. IEEE Trans. Image Process. 2009, 18, 1905–1910. [Google Scholar] [PubMed]
- Golomb, B.A.; Lawrence, D.T.; Sejnowski, T.J. Sexnet: A neural network identifies sex from human faces. Adv. Neural Inf. Process. Syst. 1990, 3, 572–577. [Google Scholar]
- Baluja, S.; Rowley, H.A. Boosting sex identification performance. Int. J. Comput. Vis. 2006, 71, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Geetha, A.; Sundaram, M.; Vijayakumari, B. Gender classification from face images by mixing the classifier outcome of prime, distinct descriptors. Soft Comput. 2019, 23, 2525–2535. [Google Scholar] [CrossRef]
- Centro Universitario da FEI. FEI Face Database. Available online: http://www.fei.edu.br/~cet/facedatabase.Html (accessed on 25 January 2020).
- Xu, Z.; Lu, L.; Shi, P. A hybrid approach to gender classification from face images. In Proceedings of the 19th International Conference on Pattern Recognition, Tampa, FL, USA, 8–11 December 2008. [Google Scholar]
- Shih, H.C. Robust gender classification using a precise patch histogram. Pattern Recognit. 2013, 46, 519–528. [Google Scholar] [CrossRef]
- Matthias, D.; Juergen, G.; Gabriele, F.; Luc, V.G. Real-time facial feature detection using conditional regression forests. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2578–2585. [Google Scholar]
- Rajeev, R.; Vishal, M.P.; Rama, C. HyperFace: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 121–135. [Google Scholar]
- Poggio, B.; Brunelli, R.; Poggio, T. HyberBF Networks for Gender Classification. 1992. Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.2814 (accessed on 13 April 2020).
- Fellous, J.M. Gender discrimination and prediction on the basis of facial metric information. Vis. Res. 1997, 37, 1961–1973. [Google Scholar] [CrossRef] [Green Version]
- Castrillón-Santana, M.; Lorenzo-Navarro, J.; Ramón-Balmaseda, E. Descriptors and regions of interest fusion for gender classification in the wild. comparison and combination with cnns. CVPR 2016. [Google Scholar] [CrossRef] [Green Version]
- Antipov, G.; Berrani, S.A.; Dugelay, J.L. Minimalistic cnn-based ensemble model for gender prediction from face images. Pattern Recognit. Lett. 2016, 70, 59–65. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3-6 December 2012; Volume 1, pp. 1097–1105. Available online: https://dl.acm.org/doi/10.5555/2999134.2999257 (accessed on 13 April 2020).
- Duan, M.; Li, K.; Yang, C. A hybrid deep learning CNN–ELM for age and gender classification. Neurocomputing 2018, 275, 448–461. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Dosenovic, T.; Kopellaar, H.; Radenovic, S. On some known fixed point results in the complex domain: Survey. Mil. Techn. Cour. 2018, 66, 563–579. [Google Scholar]
- Fan, S.; Xu, L.; Fan, Y.; Wei, K.; Li, L. Computer-aided detection of small intestinal ulcer and erosion in wireless capsule endoscopy images. Phys. Med. Biol. 2018, 63, 165001. [Google Scholar] [CrossRef]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How Transferable are Features in Deep Neural Networks. Adv. Neural Inf. Process. Syst. 2014, 3320–3328. [Google Scholar]
- Kwok, T.-Y.; Yeung, D.-Y. Constructive Feedforward Neural Networks for Regression Problems: A Survey. HKUST-CS95 1995, 1–29. [Google Scholar]
- Lin, M.; Chen, Q.; Yan, S. Network in Network. In Proceedings of the 2nd International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Han, S.; Mao, H.; William, J.D. Deep Compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding. arXiv 2015, arXiv:1510.00149. [Google Scholar]
- Computational Vision. Available online: http://www.vision.Caltech.edu/html-files/archive.html (accessed on 2 January 2020).
Network | Accuracy (%) | |
---|---|---|
LR = 0.0001 | LR= 0.0003 | |
GoogLeNet | 90.97 | 92.57 |
SqueezeNet | 90.50 | 90.76 |
ResNet50 | 92.51 | 92.22 |
Network | Accuracy (%) | |
---|---|---|
LR = 0.0001 | LR= 0.0003 | |
GoogLeNet | 88.89 | 82.96 |
SqueezeNet | 80 | 73.33 |
ResNet50 | 70.37 | 88.15 |
Network | Runtime (Minutes) | |
---|---|---|
LR = 0.0001 | LR = 0.0003 | |
GoogLeNet | 39:15 | 40:12 |
SqueezeNet | 25:48 | 46:58 |
ResNet50 | 89:11 | 158:47 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.M.; Tasnim, N.; Baek, J.-H. Human Gender Classification Using Transfer Learning via Pareto Frontier CNN Networks. Inventions 2020, 5, 16. https://doi.org/10.3390/inventions5020016
Islam MM, Tasnim N, Baek J-H. Human Gender Classification Using Transfer Learning via Pareto Frontier CNN Networks. Inventions. 2020; 5(2):16. https://doi.org/10.3390/inventions5020016
Chicago/Turabian StyleIslam, Md. Mahbubul, Nusrat Tasnim, and Joong-Hwan Baek. 2020. "Human Gender Classification Using Transfer Learning via Pareto Frontier CNN Networks" Inventions 5, no. 2: 16. https://doi.org/10.3390/inventions5020016
APA StyleIslam, M. M., Tasnim, N., & Baek, J. -H. (2020). Human Gender Classification Using Transfer Learning via Pareto Frontier CNN Networks. Inventions, 5(2), 16. https://doi.org/10.3390/inventions5020016