Control of Distributed Generators and Direct Harmonic Voltage Controlled Active Power Filters for Accurate Current Sharing and Power Quality Improvement in Islanded Microgrids
Abstract
:1. Introduction
- We develop the harmonic current sharing accuracy control strategy for the islanded microgrid, considering nonlinear unbalanced loads and with unequal feeder impedances.
- We improve the PCC voltage quality and successfully eliminate the harmonic distortion levels produced at the output terminals of the DGs due to the whack-a-mole effect in an islanded microgrid with the compensation of APF.
- We implement a power sharing strategy of active power and reactive power control using a voltage controlled APF at the PCC in an islanded microgrid which allows the circulating current to be reduced considerably.
2. System Configuration
3. Local Control of DG
3.1. PR Inner Voltage and Current Loops
3.2. Selective Virtual Impedance Using DSC-SOGI in an Islanded Microgrid
3.3. Harmonic Power Sharing Compensation Controller
3.4. Voltage and Frequency Controller
3.5. Droop Control
3.6. Power Calculation
4. Design of the Proposed Voltage Controlled APF
4.1. Active Damping Compensation Control Loop
4.2. Current Control Loop and DC Voltage Controller
4.3. Harmonic Voltage Control Loop
5. Proposed Control Strategy for the APF and DGs in an Islanded Microgrid
6. Simulation Results
7. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Jintakosonwit, P.; Fujita, H.; Akagi, H.; Ogasawara, S. Implementation and performance of cooperative control of shunt active filters for harmonic damping throughout a power distribution system. IEEE Trans. Ind. Appl. 2003, 39, 556–564. [Google Scholar] [CrossRef]
- Henderson, R.D.; Rose, P.J. Harmonics: The Effects on Power Quality and Transformers. IEEE Trans. Ind. Appl. 1994, 30, 3. [Google Scholar] [CrossRef]
- Yazdavar, A.H.; Azzouz, M.A.; El-Saadany, E.F. A Novel Decentralized Control Scheme for Enhanced Nonlinear Load Sharing and Power Quality in Islanded Microgrids. IEEE Trans. Smart Grid 2017, 3053, 2017. [Google Scholar]
- Vandoorn, T.L.; de Kooning, J.D.M.; Meersman, B.; Vandevelde, L. Review of primary control strategies for islanded microgrids with power-electronic interfaces. Renew. Sustain. Energy Rev. 2013, 19, 613–628. [Google Scholar] [CrossRef]
- Saint, B.; Member, S.; Scope, A. Update on IEEE P1547. 7—Draft Guide to Conducting Distribution Impact Studies for Distributed Resource Interconnection. In Proceedings of the 2012 IEEE/PES Transmission & Distribution Conference and Exposition, Orlando, FL, USA, 7–10 May 2012; pp. 1–2. [Google Scholar]
- Hoang, T.V.; Lee, H.H. An Adaptive Virtual Impedance Control Scheme to Eliminate the Reactive-Power-Sharing Errors in an Islanding Meshed Microgrid. IEEE J. Emerg. Sel. Top. Power Electron. 2017. [CrossRef]
- Savaghebi, M.; Jalilian, A.; Vasquez, J.C.; Guerrero, J.M. Secondary control for voltage quality enhancement in microgrids. IEEE Trans. Smart Grid 2012. [Google Scholar] [CrossRef]
- IOutput, U.R.; Chen, Y.; Guerrero, J.M.; Shuai, Z. Fast Reactive Power Sharing, Circulating Current and Resonance Suppression for Parallel Impedance Fast Reactive Power Sharing, Circulating Current and Resonance Suppression for Parallel Inverters Using Resistive-Capacitive Output Impedance. IEEE Trans. Power Electron. 2015, 31, 5524–5537. [Google Scholar]
- He, J.; Li, Y.W.; Guerrero, J.M.; Blaabjerg, F.; Vasquez, J.C. Microgrid reactive and harmonic power sharing using enhanced virtual impedance. In Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2013; pp. 447–452. [Google Scholar]
- Wang, X.; Blaabjerg, F.; Chen, Z.; Guerrero, J.M. A centralized control architecture for harmonic voltage suppression in islanded microgrids. In Proceedings of the IECON 2011—37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, VIC, Australia, 7–10 November 2011; pp. 3070–3075. [Google Scholar]
- Lee, T.; Li, J.; Cheng, P. Discrete Frequency Tuning Active Filter for Power System Harmonics. IEEE Trans. Power Electron. 2009, 24, 1209–1217. [Google Scholar]
- Lee, T.; Cheng, P.; Akagi, H.; Fujita, H. A Dynamic Tuning Method for Distributed Active Filter Systems. Control 2008, 44, 612–623. [Google Scholar] [CrossRef]
- Lorzadeh, I.; Abyaneh, H.A.; Savaghebi, M.; Lorzadeh, O.; Bakhshai, A.; Guerrero, J.M. An enhanced instantaneous circulating current control for reactive power and harmonic load sharing in islanded microgrids. J. Power Electron. 2017, 17, 1658–1671. [Google Scholar]
- Wang, X.; Li, Y.W.; Member, S.; Blaabjerg, F. Virtual-Impedance-Based Control for Voltage-Source and Current-Source Converters. IEEE Trans. Power Electron. 2015, 30, 7019–7037. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Shen, P.; Zhao, X.; Guerrero, J.M. An Enhanced Power Sharing Scheme for Voltage Unbalance and Harmonics Compensation in an Islanded Microgrid. IEEE Trans. Energy Convers. 2016, 31, 1037–1050. [Google Scholar] [CrossRef]
- Wada, K.; Fujita, H.; Akagi, H. Considerations of a shunt active filter based on voltage detection for installation on a long distribution feeder. IEEE Trans. Ind. Appl. 2002, 38, 1123–1130. [Google Scholar] [CrossRef]
- Han, Y.; Shen, P.; Zhao, X.; Guerrero, J.M. Control Strategies for Islanded Microgrid using Enhanced Hierarchical Control Structure with Multiple Current—Loop Damping Schemes. IEEE Trans. Smart 2015, 99, 1–15. [Google Scholar] [CrossRef]
- Zhao, X.; Meng, L.; Xie, C.; Guerrero, J.M.; Wu, X. A Unified Voltage Harmonic Control Strategy for Coordinated Compensation with VCM and CCM Converters. IEEE Trans. Power Electron. 2017, 8993, 1. [Google Scholar] [CrossRef]
- Munir, H.M.; Zou, J.; Xie, C.; Li, K.; Zhao, X.; Guerrero, J.M. Direct Harmonic Voltage Control Strategy for Shunt Active Power Filter. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; Volume 8, pp. 5–10. [Google Scholar]
- He, J.; Member, S.; Li, Y.W.; Munir, S. Voltage-Controlled DG—Grid Interfacing Converters. IEEE Trans. Ind. Electron. 2012, 59, 444–455. [Google Scholar] [CrossRef]
- Wang, X.; Blaabjerg, F.; Chen, Z. Synthesis of variable harmonic impedance in inverter-interfaced distributed generation unit for harmonic damping throughout a distribution network. IEEE Trans. Ind. Appl. 2012, 48, 1407–1417. [Google Scholar] [CrossRef]
- Hashempour, M.M.; Savaghebi, M.; Vasquez, J.C.; Guerrero, J.M. A control architecture to coordinate distributed generators and active power filters coexisting in a microgrid. IEEE Trans. Smart Grid 2016, 7, 2325–2336. [Google Scholar] [CrossRef]
- Munir, H.M.; Zou, J.; Xie, C.; Li, K. Direct Harmonic Voltage Control Strategy of Shunt Active Power Filters Suitable for Microgrid Applications. J. Power Electron. 2019, 19, 265–277. [Google Scholar]
- He, J.; Liang, B.; Li, Y.W.; Member, S. Simultaneous Microgrid Voltage and Current Harmonics Compensation Using Coordinated Control of Dual-Interfacing-Converters. IEEE Trans. Power Electron. 2017, 8993, 2647–2660. [Google Scholar] [CrossRef]
- He, J.; Li, Y.W.; Blaabjerg, F. An enhanced islanding microgrid reactive power, imbalance power, and harmonic power sharing scheme. IEEE Trans. Power Electron. 2015. [Google Scholar] [CrossRef]
- Ding, G.; Wei, R.; Zhou, K.; Gao, F.; Tang, Y. Communication-less harmonic compensation in a multi-bus microgrid through autonomous control of distributed generation grid-interfacing converters. J. Mod. Power Syst. Clean Energy 2015, 3, 597–609. [Google Scholar] [CrossRef] [Green Version]
- Savaghebi, M.; Jalilian, A.; Vasquez, J.C.; Guerrero, J.M. Autonomous voltage unbalance compensation in an islanded droop-controlled microgrid. IEEE Trans. Ind. Electron. 2013, 60, 1390–1402. [Google Scholar] [CrossRef]
- Karimi-Ghartemani, M.; Khajehoddin, S.A.; Jain, P.K.; Bakhshai, A.; Mojiri, M. Addressing DC component in pll and notch filter algorithms. IEEE Trans. Power Electron. 2012. [Google Scholar] [CrossRef]
- Ranjbaran, A.; Ebadian, M. A power sharing scheme for voltage unbalance and harmonics compensation in an islanded microgrid. Electr. Power Syst. Res. 2018, 155, 153–163. [Google Scholar] [CrossRef]
- Wang, X. A Novel Model Predictive Control Strategy to Eliminate Zero-Sequence Circulating Current in Paralleled Three-Level Inverters. IEEE J. Emerg. Sel. Top. Power Electron. 2019. [Google Scholar] [CrossRef]
- Li, H.; Han, Y.; Yang, P.; Xiong, J.; Wang, C.; Guerrero, J.M. A proportional harmonic power sharing scheme for hierarchical controlled microgrids considering unequal feeder impedances and nonlinear loads. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition, Cincinnati, OH, USA, 1–5 October 2017. [Google Scholar]
- Pan, C.T.; Liao, Y.H. Modeling and control of circulating currents for parallel three-phase boost rectifiers with different load sharing. IEEE Trans. Ind. Electron. 2008, 55, 2776–2785. [Google Scholar]
- Han, Y.; Li, H.; Shen, P.; Coelho, E.A.A.; Guerrero, J.M. Review of Active and Reactive Power Sharing Strategies in Hierarchical Controlled Microgrids. IEEE Trans. Power Electron. 2017, 32, 2427–2451. [Google Scholar] [CrossRef]
- Rolim, L.G.B.; da Costa, D.R.; Aredes, M. Analysis and software implementation of a robust synchronizing PLL circuit based on the pq theory. IEEE Trans. Ind. Electron. 2006. [Google Scholar] [CrossRef]
- Munir, H.M.; Zou, J.; Xie, C.; Guerrero, J.M. Cooperation of voltage controlled active power filter with grid-connected DGs in microgrid. Sustainability 2018, 11, 154. [Google Scholar] [CrossRef]
- He, J.; Li, Y.W.; Blaabjerg, F. Flexible Microgrid Power Quality Enhancement Using Adaptive Hybrid Voltage and Current Controller. IEEE Trans. Ind. Electron. 2014, 61, 2784–2794. [Google Scholar] [CrossRef]
- Basso, T. IEEE 1547 and 2030 Standards for Distributed Energy Resources Interconnection and Interoperability with the Electricity Grid IEEE 1547 and 2030 Standards for Distributed Energy Resources Interconnection and Interoperability with the Electricity Grid. Available online: https://www.nrel.gov/docs/fy15osti/63157.pdf (accessed on 15 May 2015).
System Parameters | Value |
Switching frequency | 10 kHz |
DC link | 650 V |
Nominal Voltage | V = 230 V |
DGs | |
DGs feeder parameters | Feeder inductance of DG1 LDG1 = 5mH, DG1 feeder resistance RDG1 = 0.25 Ω; Feeder inductance of DG2 LDG2 = 3mH, DG2 feeder resistance RDG2 = 0.2 Ω; Feeder inductance of DG3 LDG3 = 4mH, DG3 feeder resistance RDG3 = 0.25Ω. |
Load Parameters | Value |
Linear Load | R = 1 × 10−2 Ω, L = 10 × 10−3 H |
Nonlinear Load | LNL = 300 × 10−6 H, CNL = 150 × 10−6 F, RNL = 20 Ω |
Unbalanced Load | R = 230 Ω |
APF | |
System Parameters | Value |
LCL filter (APF converter) | L1 = 1.8 mH, Parasitic resistance of L1 (R1 = 200 mΩ) L2 = 0.9 mH, Parasitic resistance of L2 (R2 = 0.4 mΩ), Filter Capacitor Cf = 9 µF |
Load Parameters | Value |
Nonlinear Load | DC Smoothing inductor, LL = 1.8 mH DC Load, RL = 150 Ω |
Voltage and Current Loops | Value |
Kp, Ki, ωhi, ω | 0.175,0.75, 4.75, 100 pi |
Kih | 250 (h = 1), 50 (h = 5), 40 (h = 7), 20 (h = 11, 13) and 10 (h = 17) |
Power Control Parameters | Value |
Real power and reactive power droop coefficients | dp1 = 0.0001/3 rad/s/W, dq1 = 0.0001/3 V/Var; dp2 = 0.0001/2 rad/s/W, dq2 = 0.0001/2 V/Var; dp3 = 0.0001 rad/s/W, dq3 = 0.0001 V/Var |
Kpω, Kiω | 0.8, 10 s−1 |
KpE, KiE | 0.8, 10 s−1 |
τ | 50 ms |
Virtual Harmonic Resistance | R-1v, f = 6 Ω, R5v = 1 Ω, R7v = 2 Ω, R11v = 4 Ω, R13v = 4 Ω, R17v = 4 Ω. L−1v,f = 6 mH, L5v = 2 mH, L7v = 1.5 mH, L11v = 1.5 mH, L13v = 1.5 mH, L17v = 1.5 mH. |
Test Steps | Total Harmonic Distortion (THD) % | |||
---|---|---|---|---|
Step 1 (without harmonic current compensation) | DG1 voltage | DG2 voltage | DG3 voltage | Vpcc voltage |
3.54% | 5.82% | 8.00% | 10.10% | |
DG1 current | DG2 current | DG3 current | ||
5.98% | 9.04% | 12.73% | ||
Step 2 (with harmonic current compensation) | DG1 voltage | DG2 voltage | DG3 voltage | Vpcc voltage |
12.25% | 6.43% | 8.16% | 8.30% | |
DG1 current | DG2 current | DG3 current | ||
10.41% | 10.53% | 10.56% | ||
Step 3 (enabling active power filter) | DG1 voltage | DG2 voltage | DG3 voltage | Vpcc voltage |
1.05% | 1.35% | 2.31% | 2.30% | |
DG1 current | DG2 current | DG3 current | ||
0.58% | 0.94% | 1.83% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munir, H.M.; Ghannam, R.; Li, H.; Younas, T.; Golilarz, N.A.; Hassan, M.; Siddique, A. Control of Distributed Generators and Direct Harmonic Voltage Controlled Active Power Filters for Accurate Current Sharing and Power Quality Improvement in Islanded Microgrids. Inventions 2019, 4, 27. https://doi.org/10.3390/inventions4020027
Munir HM, Ghannam R, Li H, Younas T, Golilarz NA, Hassan M, Siddique A. Control of Distributed Generators and Direct Harmonic Voltage Controlled Active Power Filters for Accurate Current Sharing and Power Quality Improvement in Islanded Microgrids. Inventions. 2019; 4(2):27. https://doi.org/10.3390/inventions4020027
Chicago/Turabian StyleMunir, Hafiz Mudassir, Rami Ghannam, Hong Li, Talha Younas, Noorbakhsh Amiri Golilarz, Mannan Hassan, and Abubakar Siddique. 2019. "Control of Distributed Generators and Direct Harmonic Voltage Controlled Active Power Filters for Accurate Current Sharing and Power Quality Improvement in Islanded Microgrids" Inventions 4, no. 2: 27. https://doi.org/10.3390/inventions4020027
APA StyleMunir, H. M., Ghannam, R., Li, H., Younas, T., Golilarz, N. A., Hassan, M., & Siddique, A. (2019). Control of Distributed Generators and Direct Harmonic Voltage Controlled Active Power Filters for Accurate Current Sharing and Power Quality Improvement in Islanded Microgrids. Inventions, 4(2), 27. https://doi.org/10.3390/inventions4020027