Belt-Driven Open Source Circuit Mill Using Low-Cost 3-D Printer Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction
2.1.1. D3D Design System
2.1.2. Custom Adaptions
2.2. Software—Copper Carve
2.2.1. Backlash Compensation
If Motion Command For Each Direction If Direction != Previous Direction Call Compensate for Backlash End If Store Direction End For End If
Store Location SendGCode(G91)//Relative Movement For Each Direction If Backlash Present Move by backlash increment End If End For SendGCode(G90)//Absolute Movement SendGCode(G92 Location)//Reset to Measured Location
2.2.2. Substrate Distortion Compensation
2.2.3. Usage of Timers
2.2.4. Auto-Replace Functionality
2.3. Mill Usage Workflow
2.3.1. Board Design
2.3.2. FlatCAM
2.4. Validation
2.4.1. Positional Accuracy
2.4.2. Quality of Mill Cut
2.4.3. Feature Accuracy
2.4.4. Distortion Compensation Accuracy
3. Results
3.1. Overall Results
3.2. Positional Accuracy
3.3. Quality of Mill Cut
3.4. Feature Accuracy
3.5. Distortion Compensation
4. Discussion
4.1. Open Source as a Development Platform
4.2. D3D and Other Applications
4.3. Software Design Philosophy
4.4. Market Comparison
4.5. Additional Applications and Future Work
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Tryon, R.M. Household Manufactures in the United States 1640–1860: A Study in Industrial History; University of Chicago Press: Chicago, IL, USA, 1917. [Google Scholar]
- Sokoloff, K.; Villaflor, G. The Market for Manufacturing Workers. In The Market for Manufacturing Workers during Early Industrialization: The American Northeast, 1820 to 1860; Goldin, C., Rockoff, H., Eds.; University of Chicago Press: Chicago, IL, USA, 1992. [Google Scholar]
- Hounshell, D. From American System to Mass Production, 1800–1932; Johns Hopkins University Press: Baltimore, MD, USA, 1984; ISBN 978-0-8018-3158-4. [Google Scholar]
- Fine, C.; Freund, R. Economic Analysis of Product-Flexible Manufacturing System Investment Decisions; Massachusetts Institute of Technology: Cambridge, MA, USA, 1986; pp. 1757–1786. [Google Scholar]
- Wilson, J. Henry Ford vs. Assembly Line Balancing. Int. J. Prod. Res. 2013, 52, 757–765. [Google Scholar] [CrossRef]
- Kravis, I.; Lipsey, R. Towards an Explanation of National Price Levels; Working Paper Series 1034; National Bureau of Economic Research: Cambridge, MA, USA, 1982. [Google Scholar]
- Lipsey, R. Challenges to Home- and Host-Country Effects of Foreign Direct Investment. In Challenges to Globalization: Analyzing the Economics; Baldwin, R.E., Winters, A., Eds.; University of Chicago Press: Chicago, IL, USA, 2004; ISBN 0-262-03615-4. [Google Scholar]
- Bain, J. Economies of Scale, Concentration and the Condition of Entry in Twenty Manufacturing Industries. Am. Econ. Rev. 1954, 44, 15–39. [Google Scholar]
- Scan, B. How to Make (almost) Anything. The Economist, 2005. Available online: http://www.economist.com/node/4031304 (accessed on 11 October 2017).
- Gershenfeld, N. How to Make almost Anything: The Digital Fabrication Revolution. 2012. Available online: http://cba.mit.edu/docs/papers/12.09.FA.pdf (accessed on 28 October 2017).
- Markillie, P. A Third Industrial Revolution. The Economist. 2012. Available online: http://www.economist.com/node/21552901 (accessed on 11 October 2017).
- Gwamuri, J.; Wittbrodt, B.; Anzalone, N.; Pearce, J. Reversing the Trend of Large Scale and Centralization in Manufacturing: The Case of Distributed Manufacturing of Customizable 3-D-Printable Self-Adjustable Glasses. Chall. Sustain. 2014, 2, 30–40. [Google Scholar] [CrossRef]
- Wittbrodt, B.; Laureto, J.; Tymrak, B.; Pearce, J. Distributed Manufacturing with 3-D Printing: A Case Study of Recreational Vehicle Solar Photovoltaic Mounting Systems. J. Frugal Innov. 2015, 1, 1–7. [Google Scholar] [CrossRef]
- Wohler, T. Wohlers Report 2016: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report; Wohlers Associates Inc.: Fort Collins, CO, USA, 2016. [Google Scholar]
- Anderson, P.; Sherman, C.A. A discussion of new business models for 3D printing. Int. J. Technol. Mark. 2007, 2, 280–294. [Google Scholar] [CrossRef]
- Laplume, A.; Petersen, B.; Pearce, J. Global value chains from a 3D printing perspective. J. Int. Bus. Stud. 2016, 47, 595–609. [Google Scholar] [CrossRef][Green Version]
- Laplume, A.; Anzalone, G.; Pearce, J. Open-source, self-replicating 3-D printer factory for small-business manufacturing. Int. J. Adv. Manuf. Technol. 2015, 85, 633–642. [Google Scholar] [CrossRef]
- Home Depot|DIY Meets Miy (Make It Yourself). Available online: https://www.makerbot.com/media-center/2014/07/14/home-depot-diy-meets-miy-make (accessed on 22 March 2018).
- Ariel Bogle. Can UPS Help Make 3-D Printing Mainstream? Available online: http://www.slate.com/blogs/future_tense/2013/08/02/ups_plans_to_test_3_d_printing_services_in_u_s_stores.html (accessed on 22 March 2018).
- Weber, S. The Success of Open Source; Harvard University Press: Cambridge, MA, USA, 2004; ISBN 978-0-674-01292-9. [Google Scholar]
- Gibb, A.; Abadie, S. Building Open Source Hardware: DIY Manufacturing for Hackers and Makers, 1st ed.; Addison-Wesley Professional: Boston, MA, USA, 2014; ISBN 978-0-321-90604-5. [Google Scholar]
- Sells, E.; Bailard, S.; Smith, Z.; Bowyer, A.; Olliver, V. RepRap: The Replicating Rapid Prototyper-Maximizing Customizability by Breeding the Means of Production 2010. In Proceedings of the World Conference on Mass Customization and Personalization, Cambridge, MA, USA, 7–10 October 2007; ISBN 978-981-4280-25-9. [Google Scholar]
- Jones, R.; Haufe, P.; Sells, E.; Iravani, P.; Olliver, V.; Palmer, C.; Bowyer, A. RepRap-the Replicating Rapid Prototyper. Robotica 2011, 29, 177–191. [Google Scholar] [CrossRef]
- Bowyer, A. 3D Printing and Humanity’s First Imperfect Replicator. 3D Print. Addit. Manuf. 2014, 1, 4–5. [Google Scholar] [CrossRef]
- Pearce, J. Building Research Equipment with Free, Open-Source Hardware. Science 2012, 337, 1303–1304. [Google Scholar] [CrossRef] [PubMed]
- Pearce, J. Open-Source Lab: How to Build Your Own Hardware and Reduce Research Costs, 1st ed.; Elsevier: Waltham, MA, USA, 2014; ISBN 978-0-12-410486-0. [Google Scholar]
- Baden, T.; Chagas, A.; Marzullo, T.; Prieto-Godino, L.; Euler, T. Open Labware: 3-D Printing Your Own Lab Equipment. PLoS Biol. 2015, 13, e1002086. [Google Scholar] [CrossRef] [PubMed]
- Blua, A. A New Industrial Revolution: The Brave New World of 3D Printing. Radio Free Europe/Radio Liberty. 2013. Available online: http://www.rferl.org/content/printing-3d-new-industrial-revolution/24949765.html (accessed on 11 October 2017).
- Zhang, C.; Anzalone, N.C.; Faria, R.P.; Pearce, J.M. Open-source 3D-printable optics equipment. PLoS ONE 2013, 8, e59840. [Google Scholar] [CrossRef] [PubMed]
- Coakley, M.; Hurt, D.E. 3D Printing in the Laboratory: Maximize Time and Funds with Customized and Open-Source Labware. J. Lab. Autom. 2016, 21, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Pearce, J. Quantifying the Value of Open Source Hardware Development. Mod. Econ. 2015, 6, 1–11. [Google Scholar] [CrossRef]
- Pearce, J.M. Return on investment for open source scientific hardware development. Sci. Public Policy 2016, 43, 192–195. [Google Scholar] [CrossRef]
- Wittbrodt, B.; Glover, A.; Laureto, J.; Anzalone, G.; Oppliger, D.; Irwin, J.; Pearce, J. Life-Cycle Economic Analysis of Distributed Manufacturing with Open-Source 3-D Printers. Mechatronics 2013, 23, 713–726. [Google Scholar] [CrossRef]
- Petersen, E.E.; Pearce, J. Emergence of Home Manufacturing in the Developed World: Return on Investment for Open-Source 3-D Printers. Technologies 2017, 5, 7. [Google Scholar] [CrossRef]
- Petersen, E.E.; Kidd, R.W.; Pearce, J.M. Impact of DIY Home Manufacturing with 3D Printing on the Toy and Game Market. Technologies 2017, 5, 45. [Google Scholar] [CrossRef]
- Woern, A.L.; Pearce, J.M. Distributed Manufacturing of Flexible Products: Technical Feasibility and Economic Viability. Technologies 2017, 5, 71. [Google Scholar] [CrossRef]
- Rundle, Guy. A Revolution in the Making; Simon and Schuster: New York, NY, USA, 2014; ISBN 978-1-922213-48-8. [Google Scholar]
- Pearce, J.M. Emerging business models for open source hardware. J. Open Hardw. 2017, 1. [Google Scholar] [CrossRef]
- MyMiniFactory. Available online: https://www.myminifactory.com/ (accessed on 22 March 2018).
- Thingiverse. Available online: https://www.thingiverse.com/ (accessed on 22 March 2018).
- Youmagine. Available online: https://www.youmagine.com/ (accessed on 22 March 2018).
- Yeggi. Available online: http://www.yeggi.com/ (accessed on 22 March 2018).
- Open Circuit Institute. Available online: http://opencircuitinstitute.org/ (accessed on 22 March 2018).
- Open Circuits. Available online: http://www.opencircuits.com/Main_Page (accessed on 22 March 2018).
- Lulzbot. Available online: https://www.lulzbot.com/ (accessed on 22 March 2018).
- Re:3D. Available online: https://re3d.org/ (accessed on 22 March 2018).
- Ultimaker. Available online: https://ultimaker.com/ (accessed on 22 March 2018).
- Bantam Tools Desktop PCB Milling Machine. Bantam Tools. Available online: https://www.bantamtools.com/products/bantam-tools-desktop-pcb-milling-machine (accessed on 22 March 2018).
- Konmison DIY CNC Router Kits Wood Carving Milling Engraving Machine. Available online: http://a.co/geXc8sF (accessed on 22 March 2018).
- PCBShopper. Available online: https://pcbshopper.com/ (accessed on 22 March 2018).
- D3D. Available online: http://opensourceecology.org/wiki/D3D (accessed on 22 March 2018).
- Open Source Ecology. Available online: https://www.opensourceecology.org/ (accessed on 22 March 2018).
- N42 12 mm × 3 mm Super Strong Round Magnets Disc Rare Earth Neodymium Magnet. Available online: http://r.ebay.com/8zLeQR (accessed on 22 March 2018).
- Arduino MEGA 2560. Available online: https://www.arduino.cc/en/Main/ArduinoBoardMega2560?setlang=en (accessed on 22 March 2018).
- RAMPS 1.4. Available online: http://reprap.org/wiki/RAMPS_1.4 (accessed on 22 March 2018).
- Open Source 3D Printer Firmware. Available online: http://marlinfw.org/ (accessed on 22 March 2018).
- 2v 30a Dc Universal Regulated Switching Power Supply. Available online: http://a.co/hGDIMnD (accessed on 22 March 2018).
- Adjustable DC Power Voltage Converter AC 110V–220V to DC 0–48V. Available online: http://a.co/er5nsEW (accessed on 22 March 2018).
- TB6600 4A 9–42V Stepper Motor Driver CNC Controller. Available online: http://a.co/hc05ezE (accessed on 22 March 2018).
- QT. Available online: https://www.qt.io/ (accessed on 22 March 2018).
- GNU General Public License. Available online: https://www.gnu.org/licenses/gpl.html (accessed on 22 March 2018).
- Bagad, V.S. Mechatronics; Pune: Maharashtra, India, 2009. [Google Scholar]
- Stewart, J. Multivariable Calculus; Australia Brooks/Cole: Canberra, Australia, 2012; ISBN 978-1-305-80442-5. [Google Scholar]
- KiCAD EDA. Available online: http://kicad-pcb.org/ (accessed on 22 March 2018).
- FlatCAM. Available online: http://flatcam.org/ (accessed on 22 March 2018).
- EnPoint Engraving Bit. Available online: http://a.co/eMNTd7l (accessed on 22 March 2018).
- Oberloier, S.; Pearce, J.M. General Design Procedure for Free and Open-Source Hardware for Scientific Equipment. Designs 2017, 2, 2. [Google Scholar] [CrossRef]
- Wijnen, B.; Hunt, E.J.; Anzalone, G.C.; Pearce, J.M. Open-source syringe pump library. PLoS ONE 2014, 9, e107216. [Google Scholar] [CrossRef] [PubMed]
- Prometheus PCB Milling Machine and Accessories. Zippy Robotics, Inc. Available online: https://shop.zippyrobotics.com/ (accessed on 22 March 2018).
- Desktop CNC Router Table—DWR-0906. Baileigh Industrial. Available online: https://www.baileigh.com/desktop-cnc-router-table-dwr-0906 (accessed on 22 March 2018).
- Carbide 3D Nomad 883 Pro CNC Machine. MatterHackers. Available online: https://www.matterhackers.com/store/l/carbide-3d-nomad-883-pro-desktop-cnc-machine/sk/MN617RF0 (accessed on 22 March 2018).
- ImageJ. Available online: https://imagej.nih.gov/ij/ (accessed on 22 March 2018).
- Copper Clad Laminate PCB Circuit Board (50pcs). Available online: http://a.co/b396EOq (accessed on 22 March 2018).
- Oberloier, S.; Pearce, J.M. Open Source Low-Cost Power Monitoring System. 2018, unpublished work. [Google Scholar]
Motion Parameter | X-Axis (mm) | Y-Axis (mm) | Z-Axis (mm) |
---|---|---|---|
Resolution | 0.01 | 0.01 | 0.01 |
Backlash | 0.252 | 0.075 | 0.1 |
Rounded Backlash | 0.25 | 0.08 | 0.1 |
Cutting Speed | Width of 0.5 mm Trace | % Error of 0.5 mm Trace | Width of 0.2 mm Cut | % Error of 0.5 mm Trace Adjusted |
---|---|---|---|---|
50 mm/min | 0.40 mm | 20% | 0.25 mm | 10% |
100 mm/min | 0.35 mm | 30% | 0.35 mm | 0% |
150 mm/min | 0.20 mm | 60% | 0.40 mm | 20% |
Name | Usage | URL |
---|---|---|
Arduino MEGA | Main Controller | https://www.arduino.cc/ |
RAMPS 1.4 | Motor Controller Breakout | https://reprap.org/wiki/RAMPS_1.4 |
D3D Universal Axis | System Axes | https://www.opensourceecology.org/ |
QT Creator | Creating Control Software | https://www.qt.io/ |
Arduino IDE | Editing and Marlin | https://www.arduino.cc/ |
KiCAD | Designing Test circuits | http://kicad-pcb.org/ |
FlatCAM | Converting Boards to G-Code | http://flatcam.org/ |
Marlin | Firmware to Execute G-Code | http://marlinfw.org/ |
Name | Price (USD) | Resolution (mm) | Working Area | Max Travel Speed (mm/min) |
---|---|---|---|---|
D3D Mill * | 500 | 0.01 | 140 × 200 | 1000 |
Othermill [69] | 3199 | 0.01 | 140 × 114 | 2600 |
Prometheus [70] | 1799 | 0.01 | 160 × 100 | 3800 |
DWR-0906 [71] | 1495 | 0.01 | 220 × 160 | 2500 |
3D Nomad [72] | 2499 | 0.01 | 203 × 203 | 2500 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oberloier, S.; Pearce, J.M. Belt-Driven Open Source Circuit Mill Using Low-Cost 3-D Printer Components. Inventions 2018, 3, 64. https://doi.org/10.3390/inventions3030064
Oberloier S, Pearce JM. Belt-Driven Open Source Circuit Mill Using Low-Cost 3-D Printer Components. Inventions. 2018; 3(3):64. https://doi.org/10.3390/inventions3030064
Chicago/Turabian StyleOberloier, Shane, and Joshua M. Pearce. 2018. "Belt-Driven Open Source Circuit Mill Using Low-Cost 3-D Printer Components" Inventions 3, no. 3: 64. https://doi.org/10.3390/inventions3030064