Rapid Paper-Based System for Human Serum Creatinine Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagent Preparation
2.2. Fabrication of Paper-Based Chip
2.3. Detection System and Jaffé Chemical Reaction Process
3. Results and Discussion
3.1. Effects of Reaction Time and Reagent Concentration
3.2. Linearity of RGB Intensity Values and Calibration of Detection System
3.3. Creatinine Detection in Real Samples
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Pundir, C.S.; Yadav, S.; Kumar, A. Creatinine sensors. Trends Anal. Chem. 2013, 50, 42–52. [Google Scholar] [CrossRef]
- Songjaroen, T.; Maturos, T.; Sappat, A.; Tuantranont, A.; Laiwattanapaisal, W. Portable microfluidic system for determination of urinary creatinine. Anal. Chim. Acta 2009, 647, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Randviir, E.P.; Banks, E. Analytical methods for quantifying creatinine within biological media. Sens. Actuators B Chem. 2013, 183, 239–252. [Google Scholar] [CrossRef]
- Wang, A.B.; Fang, P.H.; Su, Y.C.; Hsieh, Y.W.; Lin, C.W.; Chen, Y.T.; Hsu, Y.C. A novel lab-on-a-chip design by sequential capillary–gravitational valves for urinary creatinine detection. Sens. Actuators B Chem. 2016, 222, 721–727. [Google Scholar] [CrossRef]
- Chen, S.; Song, Y.; Shi, F.; Liu, Y.; Ma, Q. Sensitive detection of picric acid based on creatinine-capped solid film assembled by nitrogen-doped graphene quantum dots and chitosan. Sens. Actuators B Chem. 2016, 231, 634–640. [Google Scholar] [CrossRef]
- Blel, A.; Orven, Y.; Pallet, N.; Chasse, J.F.; Vedie, B.; Loriot, M.A.; Paul, J.L.; Narjoz, C. Pegylated liposomal doxorubicin (Caelyx®) interference with the spectrophotometric Jaffemethod for quantitative determination of creatinine in human plasma. Clin. Biochem. 2017, 50, 455–457. [Google Scholar] [CrossRef] [PubMed]
- Duong, H.D.; Rhee, J.I. Development of ratiometric fluorescent biosensors for the determination of creatine and creatinine in urine. Sensors 2017, 17, 2570. [Google Scholar] [CrossRef] [PubMed]
- Vitali, L.; Gonçalves, S.; Rodrigues, V.; Fávere, V.T.; Micke, G.A. Development of a fast method for simultaneous determination of hippuric acid, mandelic acid and creatinine in urine by capillary zone electrophoresis using polymer multilayer-coated capillary. Anal. Bioanal. Chem. 2017, 409, 1943–1950. [Google Scholar] [CrossRef] [PubMed]
- Hanif, S.; John, P.; Gao, W.; Saqib, M.; Qi, L.; Xu, G. Chemiluminescence of creatinine/H2O2/Co2+ and its application for selective creatinine detection. Biosens. Bioelectron. 2016, 75, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Langsi, V.K.; Ashu-Arrah, B.A.; Ward, N.; Glennon, J.D. Synthesis and characterisation of non-bonded 1.7 μm thin-shell (TS1.7-100 nm) silica particles for the rapid separation and analysis of uric acid and creatinine in human urine by hydrophilic interaction chromatography. J. Chromatogr. A 2017, 1506, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Diouf, A.; Motia, S.; El Alami, N.; El Bari, N.; Bouchikhi, B. Development and characterization of an electrochemical biosensor for creatinine detection in human urine based on functional molecularly imprinted polymer. J. Electroanal. Chem. 2017, 788, 44–53. [Google Scholar] [CrossRef]
- Saidi, T.; Moufid, M.; Zaim, O.; Bari, N.E.; Bouchikhi, B. Voltammetric electronic tongue combined with chemometric techniques for direct identification of creatinine level in human urine. Measurement 2018, 115, 178–184. [Google Scholar] [CrossRef]
- Krishnegowda, A.; Padmarajaiah, N.; Anantharaman, S.; Honnur, K. Spectrophotometric assay of creatinine in human serum sample. Arab. J. Chem. 2017, 10, S2018–S2024. [Google Scholar] [CrossRef]
- Suzuki, M.; Furuhashi, M.; Sesoko, S.; Kosuge, K.; Maeda, T.; Todoroki, K.; Inoue, K.; Min, J.Z.; Toyo’oka, T. Determination of creatinine-related molecules in saliva by reversed-phase liquid chromatography with tandem mass spectrometry and the evaluation of hemodialysis in chronic kidney disease patients. Anal. Chim. Acta 2016, 911, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Guinovart, T.; Hernández-Alonso, D.; Adriaenssens, L.; Blondeau, P.; Martínez-Belmonte, M.; Rius, F.X.; Andrade, F.J.; Ballester, P. Recognition and sensing of creatinine. Angew. Chem. Int. Ed. 2016, 55, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Guinovart, T.; Hernández-Alonso, D.; Adriaenssens, L.; Blondeau, P.; Rius, F.X.; Ballester, P.; Andrade, F.J. Characterization of a new ionophore-based ion-selective electrode for the potentiometric determination of creatinine in urine. Biosens. Bioelectron. 2017, 87, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Raveendran, J.; Resmi, P.E.; Ramachandran, T.; Nair, B.G.; Babu, T.G.S. Fabrication of a disposable non-enzymatic electrochemical creatinine sensor. Sens. Actuators B Chem. 2017, 243, 589–595. [Google Scholar] [CrossRef]
- Hooshmand, S.; Es’haghi, Z. Microfabricated disposable nanosensor based on CdSe quantum dot/ionic liquid-mediated hollow fiber-pencil graphite electrode for simultaneous electrochemical quantification of uric acid and creatinine in human samples. Anal. Chim. Acta 2017, 972, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Sutariya, P.G.; Pandya, A.; Lodha, A.; Menon, S.K. A simple and rapid creatinine sensing via DLS selectivity, using calix[4] arene thiol functionalized gold nanoparticles. Talanta 2016, 147, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Alula, M.T.; Karamchand, L.; Hendricks, N.R.; Blackburn, J.M. Citrate-capped silver nanoparticles as a probe for sensitive and selective colorimetric and spectrophotometric sensing of creatinine in human urine. Anal. Chim. Acta 2018, 1007, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Lohar, S.; Mukherjee, M.; Chattopadhyay, P.; Dhara, K. A fluorescent probe for the selective detection of creatinine in aqueous buffer applicable to human blood serum. Chem. Commun. 2016, 52, 13706–13709. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Roy, A.; Panja, R.; Samanta, S.; Chakrabarti, S.; Yu, P.L.; Maikap, S.; Cheng, H.M.; Tsai, L.N.; Qiu, J.T. Comparison of resistive switching characteristics by using e-gun/sputter deposited SiOx film in W/SiOx/TiN structure and pH/creatinine sensing through iridium electrode. J. Alloy Compd. 2017, 726, 30–40. [Google Scholar] [CrossRef]
- Nieh, C.H.; Tsujimura, S.; Shirai, O.; Kano, K. Amperometric biosensor based on reductive H2O2 detection using pentacyanoferrate-bound polymer for creatinine determination. Anal. Chim. Acta 2013, 767, 128–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Jaiwal, R.; Pundir, C.S. An improved amperometric creatinine biosensor based on nanoparticles of creatininase, creatinase and sarcosine oxidase. Anal. Biochem. 2017, 537, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Chen, R.Y.; Du, J.J.; Fan, J.L.; Peng, X.J. Gold nanoparticle-based colorimetric recognition of creatinine with good selectivity and sensitivity. Ind. Eng. Chem. Res. 2016, 55, 12334–12340. [Google Scholar] [CrossRef]
- Parmar, A.K.; Valand, N.N.; Solanki, K.B.; Menon, S.K. Picric acid capped silver nanoparticles as a probe for colorimetric sensing of creatinine in human blood and cerebrospinal fluid samples. Analyst 2016, 141, 1488–1498. [Google Scholar] [CrossRef] [PubMed]
- Kasap, B.O.; Marchenko, S.V.; Soldatkin, O.O.; Dzyadevych, S.V.; Kurc, B.A. Biosensors based on nano-gold/zeolite-modified Ion selective field-effect transistors for creatinine detection. Nanoscale Res. Lett. 2017, 12, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Fu, L.M. Recent advances and applications of micromixers. Sens. Actuators B Chem. 2018, 259, 677–702. [Google Scholar] [CrossRef]
- Yeh, E.; Fu, C.; Hu, L.; Thakur, R.; Feng, J.; Lee, L.P. Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip. Sci. Adv. 2017, 3, e1501645. [Google Scholar] [CrossRef] [PubMed]
- Swain, B.; Hong, M.H.; Kang, L.; Kim, B.S.; Kim, N.H.; Lee, C.G. Optimization of CdSe nanocrystals synthesis with a microfluidic reactor and development of combinatorial synthesis process for industrial production. Chem. Eng. J. 2017, 308, 311–321. [Google Scholar] [CrossRef]
- Kong, X.; Chong, X.; Squire, K.; Wang, A.X. Microfluidic diatomite analytical devices for illicit drug sensing with ppb-Level sensitivity. Sens. Actuators B Chem. 2018, 259, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Tomar, M.; Gupta, V. Development of a microfluidic electrochemical biosensor: Prospect for point-of-care cholesterol monitoring. Sens. Actuators B Chem. 2018, 261, 460–466. [Google Scholar] [CrossRef]
- Frank, P.; Haefner, S.; Elstner, M.; Richter, A. Fully-programmable, low-cost, “do-it-yourself” pressure source for general purpose use in the microfluidic laboratory. Inventions 2016, 1, 13. [Google Scholar] [CrossRef]
- Ynag, R.J.; Fu, L.M.; Hou, H.H. Review and perspectives on microfluidic flow cytometers. Sens. Actuators B Chem. 2018, 266, 26–45. [Google Scholar] [CrossRef]
- Han, T.; Zhang, L.; Xu, H.; Xuan, J. Factory-on-chip: Modularised microfluidic reactors for continuous mass production of functional materials. Chem. Eng. J. 2017, 326, 765–773. [Google Scholar] [CrossRef]
- Chung, J.; Hwang, H.Y.; Chen, Y.; Lee, T.Y. Microfluidic packaging of high-density CMOS electrode array for lab-on-a-chip applications. Sens. Actuators B Chem. 2018, 254, 542–550. [Google Scholar] [CrossRef]
- Huang, C.J.; Lin, J.L.; Chen, P.H.; Syu, M.J.; Lee, G.B. A multi-functional electrochemical sensing system using microfluidic technology for the detection of urea and creatinine. Electrophoresis 2011, 32, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, X.; Yang, J.; Yang, X.; Hou, F.; Chen, Z. Rapid determination of creatinine in human urine by microchip electrophoresis with LED induced fluorescence detection. Chromatographia 2012, 75, 1287–1293. [Google Scholar] [CrossRef]
- Lin, C.C.; Hsu, J.L.; Tseng, C.C.; Lee, G.B. An integrated microfluidic system for the determination of microalbuminuria by measuring the albumin-to-creatinine ratio. Microfluid. Nanofluid. 2011, 10, 1055–1067. [Google Scholar] [CrossRef]
- Lin, Y.H.; Wang, S.H.; Wu, M.H.; Pan, T.M.; Lai, C.S.; Luo, J.D.; Chiou, C.C. Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads. Biosens. Bioelectron. 2013, 43, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Dosso, F.D.; Decrop, D.; Pérez-Ruiz, E.; Daems, D.; Agten, H.; Al-Ghezi, O.; Bollen, O.; Breukers, J.; Rop, F.D.; Katsafadou, M.; et al. Creasensor: SIMPLE technology for creatinine detection in plasma. Anal. Chim. Acta 2018, 1000, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Talalak, K.; Noiphung, J.; Songjaroen, T.; Chailapakul, O.; Laiwattanapaisal, W. A facile low-cost enzymatic paper-based assay for the determination of urine creatinine. Talanta 2015, 144, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Sittiwong, J.; Unob, F. Paper-based platform for urinary creatinine detection. Anal. Sci. 2016, 32, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Tambaru, D.; Rupilu, R.H.; Nitti, F.; Gauru, I.; Suwari. Development of paper-based sensor coupled with smartphone detector for simple creatinine determination. AIP Conf. Proc. 2017, 1823, 020095. [Google Scholar]
- Sununta, S.; Rattanarat, P.; Challapakul, O.; Praphairaksit, N. Microfluidic paper-based analytical devices for determination of creatinine in urine samples. Anal. Sci. 2018, 34, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.C.; Wang, Y.N.; Fu, L.M.; Chen, K.L. Microfluidic paper-based chip platform for benzoic acid detection in food. Food Chem. 2018, 249, 162–167. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, L.-M.; Tseng, C.-C.; Ju, W.-J.; Yang, R.-J. Rapid Paper-Based System for Human Serum Creatinine Detection. Inventions 2018, 3, 34. https://doi.org/10.3390/inventions3020034
Fu L-M, Tseng C-C, Ju W-J, Yang R-J. Rapid Paper-Based System for Human Serum Creatinine Detection. Inventions. 2018; 3(2):34. https://doi.org/10.3390/inventions3020034
Chicago/Turabian StyleFu, Lung-Ming, Chin-Chung Tseng, Wei-Jhong Ju, and Ruey-Jen Yang. 2018. "Rapid Paper-Based System for Human Serum Creatinine Detection" Inventions 3, no. 2: 34. https://doi.org/10.3390/inventions3020034
APA StyleFu, L. -M., Tseng, C. -C., Ju, W. -J., & Yang, R. -J. (2018). Rapid Paper-Based System for Human Serum Creatinine Detection. Inventions, 3(2), 34. https://doi.org/10.3390/inventions3020034