Preliminary Considerations on the Co-Production of Biomethane and Ammonia from Algae and Bacteria
Abstract
1. Introduction
1.1. Environmental Challenges and the Need for New Fuels
1.2. An Overview on Microalgae and Cyanobacteria
1.3. Considerations in Terms of Refrigeration
- Ammonia (R-717): This was already introduced into the refrigeration sector in the 1930s due to its excellent efficiency in refrigeration processes. It features a notably low boiling point and a high energy efficiency as a result of its significant latent heat of evaporation. Despite these advantages, ammonia presents certain limitations: it is toxic at concentrations exceeding 300 ppm, with a low degree of flammability–L2-type–and is corrosive to copper components. To mitigate this last drawback, ammonia-based systems are often designed to operate with an intermediate (secondary) fluid.
- Carbon dioxide (R-744): This is regarded as a low-environmental-impact refrigerant relative to the substances employed in earlier refrigeration systems. Indeed, it exhibits an ozone depletion potential (ODP) of 0 and a global warming potential (GWP) of 1, indicating its minimal environmental impact. Indeed, it has no adverse effects on the ozone layer. Additionally, R-744 is non-flammable and can be effectively utilised as a secondary refrigerant in various cooling applications.
- Water (R-718): This refrigerant is both non-toxic and non-flammable, with zero impact on ozone layer depletion and global warming potential. Additionally, it is relatively economical compared to many alternative working fluids.
- Hydrocarbons (HCs): These represent a diverse group of refrigerants, including alkanes, alcohols, ketones, and ethers, e.g., isobutane (R-600a) and propane (R-290). Their key benefits stem from their favourable thermophysical characteristics and the absence of halogens like fluorine or chlorine, thereby eliminating the risk of acid generation. Nonetheless, their significant flammability poses safety challenges in certain applications.
1.4. Considerations in Terms of Ammonia
1.5. Bio-Based Ammonia Production
- Biological nitrogen fixation using nitrogenase: Biological nitrogen fixation represents a critical natural process that facilitates the conversion of atmospheric molecular nitrogen into ammonia. This metabolic pathway is responsible for approximately 50% of the bioavailable nitrogen available to support various life forms [80]. Nitrogen-fixing microorganisms, which display remarkable resilience and adaptability, have been extensively studied and utilised in the development of the biofertilisers produced at the commercial scale [81].
- Cell and metabolic engineering for ammonia production: Engineered microorganisms can efficiently ferment various types of biomass, including food waste, microbial biomass, and protein-rich crop residues, owing to the comprehensive understanding of their metabolic pathways. This method utilises microbial fermentation to transform diverse organic materials into valuable nitrogen-rich compounds, thereby supporting sustainable agricultural practices and effective waste management strategies [74].
- Ammonia from wastewater treatment plants: Microbial fuel cell technology can generate ammonia during the treatment of wastewater by using specialised bacteria for ammonia oxidation. In this method, wastewater is directed into an anaerobic anode chamber, where bacteria decompose organic materials, releasing electrons. These electrons then help the ammonia-oxidising bacteria convert ammonia into N2, effectively cleaning the wastewater [82].
- The hyper-ammonia-producing bacteria route: Several studies in ruminant animal sciences have aimed to enhance microbial protein synthesis and regulate ammonia production [83]. Researchers identified a group of bacteria known as hyper-ammonia-producing bacteria that generate more ammonia than can be utilised by ruminal microbes for functions like protein synthesis [84]. These bacteria convert dietary protein into surplus ammonia during the digestive process, breaking down nitrogen-containing amines into ammonia or ammonium [85]. Recently, the production of biological ammonia through the fermentation of protein biomass by rumen bacteria was explored as a relatively novel approach, highlighting its potential to enhance the bioproduction of ammonia [74].
1.6. The Aim of This Paper
2. Materials and Methods
- Proteins: CwHxOyNz;
- Carbohydrates: CwHxOy;
- Lipids: CwHxOy.
- The specific theoretical yields:for each average component of the biomass (proteins–carbohydrates–lipids and proteins, respectively);
- The mean average composition of each i-th strain (, , ), using the data from Li et al. [14];
- The mean average total solid composition of each i-th strain, using the data from Li et al. [14];
- The mean average volatile solid composition of each i-th strain, using the data from Li et al. [14];
- The mean biomass productivity (), using data from Li et al. [14];
- The time frame considered ( yr);
- The mean available volume of water for each j-th pit-lake in the Alessandria district (), using data from Castagna et al. [91].
3. Results
- The theoretical methane yields, , are the following: for proteins, for carbohydrates, and for lipids;
- The theoretical ammonium production : 150 for proteins.
4. Discussion
- Readily accessible: They can be sourced from various types of biomass;
- Technically and ecologically viable: The biomass used for their production comes from photosynthetic organisms that absorb the same amount of carbon dioxide that is released during the combustion of biofuels throughout their life cycle;
- Economically viable: Every country has the potential to locally produce the raw materials needed for biofuel production.
- Define agrivoltaic systems as photovoltaic installations with elevated, rotating modules situated no more than 3 km from areas designated for industrial, artisanal, or commercial use;
- Permit the installation of floating photovoltaic systems on artificial water bodies, including disused quarry reservoirs and irrigation channels;
- Identify suitable areas for photovoltaic installations, streamlining the authorization processes and promoting development in these zones.
- They can provide a consistent supply of biomass, as their harvesting is not subject to seasonal variations [120];
- They exhibit a rapid doubling time during their exponential growth phase, typically taking less than 3.5 h [39];
- They have a high potential yield relative to the area used for cultivation [123].
- These environments usually contain detrimental water and thus are unsuitable for human consumption or agricultural use, making them available for non-potable applications only (e.g., algal biomass production);
- The spatial confinement of mining sites can act as a natural containment system, reducing the risk of spreading invasive algal species into surrounding ecosystems;
- A second life can be offered to these sites, which usually have low market value, presenting an opportunity for repurposing, potentially enabling the development of novel bio-industrial ventures and generating employment at the local level;
- Due to the bioremediation capacity of microalgae and cyanobacteria strains (immobilising or absorbing certain heavy metals), they can contribute to the bioremediation of soils and waters impacted by previous extractive operations;
- Even in underground mining facilities, artificial lighting systems can enhance the photosynthetic activity, while naturally stable temperature conditions may improve the cultivation efficiency.
5. Conclusions
- Using sources of renewable energy.
- CO2 sequestration, which has significantly high estimated investment costs, making its implementation challenging.
- Encouragement of the current high-efficiency technologies and the integration of advanced energy systems with low CO2 emissions; in fact, reducing CO2 is closely linked to the thermodynamic efficiency of a facility, and energy policies could be designed to promote the best available technologies and their adoption.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandra, R.; Iqbal, H.M.; Vishal, G.; Lee, H.S.; Nagra, S. Algal biorefinery: A sustainable approach to valorize algal-based biomass towards multiple product recovery. Bioresour. Technol. 2019, 278, 346–359. [Google Scholar] [CrossRef] [PubMed]
- Sarma, S.; Sharma, S.; Rudakiya, D.; Upadhyay, J.; Rathod, V.; Patel, A.; Narra, M. Valorization of microalgae biomass into bioproducts promoting circular bioeconomy: A holistic approach of bioremediation and biorefinery. 3 Biotech 2021, 11, 378. [Google Scholar] [CrossRef] [PubMed]
- Águila Carricondo, P.; de la Roche Cadavid, J.P.; Galán, P.L.; Bautista, L.F.; Vicente, G. New green biorefineries from cyanobacterial-microalgal consortia: Production of chlorophyll-rich extracts for the cosmetic industry and sustainable biogas. J. Clean. Prod. 2023, 429, 139652. [Google Scholar] [CrossRef]
- Bora, A.; Thondi Rajan, A.S.; Ponnuchamy, K.; Muthusamy, G.; Alagarsamy, A. Microalgae to bioenergy production: Recent advances, influencing parameters, utilization of wastewater—A critical review. Sci. Total Environ. 2024, 946, 174230. [Google Scholar] [CrossRef]
- de Farias Silva, C.E.; Barbera, E.; Bertucco, A. Biorefinery as a Promising Approach to Promote Ethanol Industry from Microalgae and Cyanobacteria. In Bioethanol Production from Food Crops; Elsevier: Amsterdam, The Netherlands, 2019; pp. 343–359. [Google Scholar] [CrossRef]
- Singh, J.S.; Kumar, A.; Singh, M. Cyanobacteria: A sustainable and commercial bio-resource in production of bio-fertilizer and bio-fuel from waste waters. Environ. Sustain. Indic. 2019, 3–4, 100008. [Google Scholar] [CrossRef]
- Mohsenpour, S.F.; Hennige, S.; Willoughby, N.; Adeloye, A.; Gutierrez, T. Integrating micro-algae into wastewater treatment: A review. Sci. Total Environ. 2021, 752, 142168. [Google Scholar] [CrossRef]
- Nicknig, M.A.; Azevedo, A.C.d.; de Oliveira, H.A.; Schneider, I.A.H. Cultivation of Microalgae (Scenedesmus Sp.) Using Coal Min. Wastewater Sep. Via Coagulation/Flocculation Dissolved Air Flotat. (DAF). Minerals 2024, 14, 426. [Google Scholar] [CrossRef]
- Levett, A.; Gagen, E.J.; Levett, I.; Erskine, P.D. Integrating microalgae production into mine closure plans. J. Environ. Manag. 2023, 337, 117736. [Google Scholar] [CrossRef]
- CSIRO. Algae-Based Technologies for Improved Mine Site Sustainability; University of Queensland: Gatton, Australia; Murdoch University: Perth, Australia, 2025.
- Rawat, I.; Kumar, R.R.; Mutanda, T.; Bux, F. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl. Energy 2011, 88, 3411–3424. [Google Scholar] [CrossRef]
- Wu, J.Y.; Lay, C.H.; Chen, C.C.; Wu, S.Y. Lipid accumulating microalgae cultivation in textile wastewater: Environmental parameters optimization. J. Taiwan Inst. Chem. Eng. 2017, 79, 1–6. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Chen, P.; Min, M.; Chen, Y.; Zhu, J.; Ruan, R. Cultivation of microalgae in dairy wastewater for nutrient removal and biomass production. Bioresour. Technol. 2016, 102, 231–235. [Google Scholar]
- Li, K.; Liu, Q.; Fang, F.; Luo, R.; Lu, Q.; Zhou, W.; Huo, S.; Cheng, P.; Liu, J.; Addy, M.; et al. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresour. Technol. 2019, 291, 121934. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Parra, P.; Liu, Y.; Field, J.A.; Sierra-Alvarez, R. Nutrient recovery and biogas generation from the anaerobic digestion of waste biomass from algal biofuel production. Renew. Energy 2017, 108, 410–416. [Google Scholar] [CrossRef]
- Rossi, S.; Carecci, D.; Marazzi, F.; Di Benedetto, F.; Mezzanotte, V.; Parati, K.; Alberti, D.; Geraci, I.; Ficara, E. Integrating microalgae growth in biomethane plants: Process design, modelling, and cost evaluation. Heliyon 2024, 10, e23240. [Google Scholar] [CrossRef]
- Hasan, M.M.; Mofijur, M.; Uddin, M.N.; Kabir, Z.; Badruddin, I.A.; Khan, T.M.Y. Insights into anaerobic digestion of microalgal biomass for enhanced energy recovery. Front. Energy Res. 2024, 12, 1355686. [Google Scholar] [CrossRef]
- Barreiro-Vescovo, S.; Barbera, E.; Bertucco, A.; Sforza, E. Integration of Microalgae Cultivation in a Biogas Production Process from Organic Municipal Solid Waste: From Laboratory to Pilot Scale. ChemEngineering 2020, 4, 25. [Google Scholar] [CrossRef]
- Milledge, J.J.; Nielsen, B.V.; Maneein, S.; Harvey, P.J. A brief review of anaerobic digestion of algae for bioenergy. Energies 2019, 12, 1166. [Google Scholar] [CrossRef]
- Roubaud, A.; Favrat, D. Improving performances of a lean burn cogeneration biogas engine equipped with combustion prechambers. Fuel 2005, 84, 2001–2007. [Google Scholar] [CrossRef]
- Ward, A.; Lewis, D.; Green, F. Anaerobic digestion of algae biomass: A review. Algal Res. 2014, 5, 204–214. [Google Scholar] [CrossRef]
- Su, Y.; Song, K.; Zhang, P.; Su, Y.; Cheng, J.; Chen, X. Progress of microalgae biofuel’s commercialization. Renew. Sustain. Energy Rev. 2017, 74, 402–411. [Google Scholar] [CrossRef]
- Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Oncel, S.S. Microalgae for a macroenergy world. Renew. Sustain. Energy Rev. 2013, 26, 241–264. [Google Scholar] [CrossRef]
- Chen, H.; Li, T.; Wang, Q. Ten years of algal biofuel and bioproducts: Gains and pains. Planta 2019, 249, 195–219. [Google Scholar] [CrossRef]
- Tang, D.Y.Y.; Yew, G.Y.; Koyande, A.K.; Chew, K.W.; Vo, D.V.N.; Show, P.L. Green technology for the industrial production of biofuels and bioproducts from microalgae: A review. Environ. Chem. Lett. 2020, 18, 1967–1985. [Google Scholar] [CrossRef]
- Prabha, S.; Vijay, A.K.; Paul, R.R.; George, B. Cyanobacterial biorefinery: Towards economic feasibility through the maximum valorization of biomass. Sci. Total Environ. 2022, 814, 152795. [Google Scholar] [CrossRef]
- Kumar, R.; Ghosh, A.K.; Pal, P. Synergy of biofuel production with waste remediation along with value-added co-products recovery through microalgae cultivation: A review of membrane-integrated green approach. Sci. Total Environ. 2020, 698, 134169. [Google Scholar] [CrossRef]
- Thoré, E.S.; Muylaert, K.; Bertram, M.G.; Brodin, T. Microalgae. Curr. Biol. 2023, 33, 91–95. [Google Scholar] [CrossRef]
- Bahadar, A.; Bilal Khan, M. Progress in energy from microalgae: A review. Renew. Sustain. Energy Rev. 2013, 27, 128–148. [Google Scholar] [CrossRef]
- Quintana, N.; Van der Kooy, F.; Van de Rhee, M.D.; Voshol, G.P.; Verpoorte, R. Renewable energy from Cyanobacteria: Energy production optimization by metabolic pathway engineering. Appl. Microbiol. Biotechnol. 2011, 91, 471–490. [Google Scholar] [CrossRef]
- Brasil, B.d.S.A.F.; de Siqueira, F.G.; Salum, T.F.C.; Zanette, C.M.; Spier, M.R. Microalgae and cyanobacteria as enzyme biofactories. Algal Res. 2017, 25, 76–89. [Google Scholar] [CrossRef]
- Zahra, Z.; Choo, D.H.; Lee, H.; Parveen, A. Cyanobacteria: Review of Current Potentials and Applications. Environments 2020, 7, 13. [Google Scholar] [CrossRef]
- Richmond, A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology; Blackwell Science: Oxford, UK, 2004. [Google Scholar]
- Singh, J.; Gu, S. Factors influencing algal biomass and lipid accumulation in microalgae for biofuel applications. Renew. Sustain. Energy Rev. 2015, 50, 431–444. [Google Scholar] [CrossRef]
- Tiwari, T.; Buffam, I.; Sponseller, R.A.; Laudon, H. Inferring scale-dependent processes influencing stream water biogeochemistry from headwater to sea. Limnol. Oceanogr. 2018, 63, 114–128. [Google Scholar] [CrossRef]
- Pittman, J.K.; Dean, A.P.; Osundeko, O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 2011, 102, 17–25. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef]
- Markou, G.; Nerantzis, E. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnol. Adv. 2013, 31, 1532–1542. [Google Scholar] [CrossRef]
- Borowitzka, M.A.; Moheimani, N.R. Algae for Biofuels and Energy; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Uduman, N.; Qi, Y.; Danquah, M.; Forde, G.; Hoadley, A. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. J. Renew. Sustain. Energy 2010, 2, 012701. [Google Scholar] [CrossRef]
- Chen, C.W.; Yeh, K.L.; Aisyah, R.; Lee, D.J.; Chang, J.S. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour. Technol. 2011, 102, 71–81. [Google Scholar] [CrossRef]
- Gouveia, L.; Oliveira, A.C. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 2009, 36, 269–274. [Google Scholar] [CrossRef]
- Harun, R.; Singh, M.; Forde, G.; Danquah, M. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sustain. Energy Rev. 2010, 14, 1037–1047. [Google Scholar] [CrossRef]
- Dinçer, I.; Kanoǧlu, M. Refrigeration Systems and Applications; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Timmerhaus, K.D. Cryogenic Process Engineering. In Encyclopedia of Physical Science and Technology; Elsevier: Amsterdam, The Netherlands, 2003; pp. 13–36. [Google Scholar] [CrossRef]
- Dinçer, I.; Ratlamwala, T. Integrated Absorption Refrigeration Systems—Comparative Energy and Exergy Analyses; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Mahmood, R.A.; Ali, O.M.; Al-Janabi, A.; Al-Doori, G.; Noor, M.M. Review of Mechanical Vapour Compression Refrigeration System Part 2: Performance Challenge. Int. J. Appl. Mech. Eng. 2021, 26, 119–130. [Google Scholar] [CrossRef]
- Mota-Babiloni, A.; Makhnatch, P. Predictions of European refrigerants place on the market following F-gas regulation restrictions. Int. J. Refrig. 2021, 127, 101–110. [Google Scholar] [CrossRef]
- Ayub, Z.; Siller, D.A.; Gage, C.; Reindl, D.; Mueller, N.; DeBullet, J.; Pearson, A.; Ciconkov, R. ASHRAE Position Document on Natural Refrigerants. In ASHRAE Position Document; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2009. [Google Scholar]
- Kaynakli, O.; Saka, K.; Kaynakli, F. Energy and exergy analysis of a double effect absorption refrigeration system based on different heat sources. Energy Convers. Manag. 2015, 106, 21–30. [Google Scholar] [CrossRef]
- Mohammadi, K.; Efati Khaledi, M.S.; Powell, K. A novel hybrid dual-temperature absorption refrigeration system: Thermodynamic, economic, and environmental analysis. J. Clean. Prod. 2019, 233, 1075–1087. [Google Scholar] [CrossRef]
- Bagheri, B.S.; Shirmohammadi, R.; Mahmoudi, S.; Rosen, M. Optimization and comprehensive exergy-based analyses of a parallel flow double-effect water-lithium bromide absorption refrigeration system. Appl. Therm. Eng. 2019, 152, 643–653. [Google Scholar] [CrossRef]
- Higa, M.; Yamamoto, E.Y.; de Oliveira, J.C.D.; Conceição, W.A.S. Evaluation of the integration of an ammonia-water power cycle in an absorption refrigeration system of an industrial plant. Energy Convers. Manag. 2018, 178, 265–276. [Google Scholar] [CrossRef]
- Kairouani, L.; Nehdi, E. Cooling performance and energy saving of a compression–absorption refrigeration system assisted by geothermal energy. Appl. Therm. Eng. 2006, 26, 288–294. [Google Scholar] [CrossRef]
- Tugcu, A.; Arslan, O. Optimization of geothermal energy aided absorption refrigeration system—GAARS: A novel ANN-based approach. Geothermics 2017, 65, 210–221. [Google Scholar] [CrossRef]
- Said, S.; Spindler, K.; El-Shaarawi, M.; Siddiqui, M.; Schmid, F.; Bierling, B.; Khan, M. Design, construction and operation of a solar powered ammonia–water absorption refrigeration system in Saudi Arabia. Int. J. Refrig. 2018, 62, 222–231. [Google Scholar] [CrossRef]
- Christopher, S.; Santosh, R.; Vikram, M.P.; Prabakaran, R.; Thakur, A.; Xu, H. Optimization of a solar water heating system for vapor absorption refrigeration system. Environ. Prog. Sustain. Energy 2020, 40, 13489. [Google Scholar] [CrossRef]
- Xu, Q.; Lu, D.; Chen, G.; Guo, H.; Dong, X.; Zhao, Y.; Shen, J.; Gong, M. Experimental study on an absorption refrigeration system driven by temperature-distributed heat sources. Energy 2019, 170, 471–479. [Google Scholar] [CrossRef]
- Lu, D.; Xu, Q.; Chen, G.; Dong, X.; Bai, Y.; Gong, M.; Zhao, Y.; Shen, J. Modeling and analysis of an ammonia—Water absorption refrigeration system utilizing waste heat with large temperature span. Int. J. Refrig. 2019, 103, 180–190. [Google Scholar] [CrossRef]
- Cui, P.; Yu, M.; Liu, Z.; Zhu, Z.; Yang, S. Energy, exergy, and economic (3E) analyses and multi-objective optimization of a cascade absorption refrigeration system for low-grade waste heat recovery. Energy Convers. Manag. 2019, 184, 249–261. [Google Scholar] [CrossRef]
- Manzela, A.A.; Hanriot, S.M.; Cabezas-Gómez, L.; Sodré, J. Using engine exhaust gas as energy source for an absorption refrigeration system. Appl. Energy 2010, 87, 1141–1148. [Google Scholar] [CrossRef]
- Rêgo, A.; Hanriot, S.; Oliveira, A.; Brito, P.; Rêgo, T. Automotive exhaust gas flow control for an ammonia–water absorption refrigeration system. Appl. Therm. Eng. 2014, 64, 101–107. [Google Scholar] [CrossRef]
- Salmi, W.; Vanttola, J.; Elg, M.; Kuosa, M.; Lahdelma, R. Using waste heat of ship as energy source for an absorption refrigeration system. Appl. Therm. Eng. 2017, 115, 501–516. [Google Scholar] [CrossRef]
- Ammar, N.R.; Sediek, I.S. Thermo-economic analysis and environmental aspects of absorption refrigeration unit operation onboard marine vehicles: RO-PAX vessel case study. Pol. Marittime Res. 2018, 25, 94–103. [Google Scholar] [CrossRef]
- Horuz, I.; Callander, T. Experimental investigation of a vapor absorption refrigeration system. Int. J. Refrig. 2004, 27, 10–16. [Google Scholar] [CrossRef]
- Srikhirin, P.; Aphornratana, S.; Chungpaibulpatana, S. A review of absorption refrigeration technologies. Renew. Sustain. Energy Rev. 2001, 5, 343–372. [Google Scholar] [CrossRef]
- Smith, C.; Hill, A.K.; Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 2020, 13, 331–344. [Google Scholar] [CrossRef]
- Samuel, M.S.; Prabakaran Sudhakar, M.; Santhappan, J.S.; Ravikumar, M.; Kalaiselvan, N.; Mathimani, T. Ammonia production from microalgal biosystem: Present scenario, cultivation systems, production technologies, and way forward. Fuel 2024, 368, 131643. [Google Scholar] [CrossRef]
- Smil, V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production; MIT Press: Cambridge, UK, 2004. [Google Scholar]
- Ghavam, S.; Vahdati, M.; Wilson, I.A.G.; Styring, P. Sustainable Ammonia Production Processes. Front. Energy Res. 2021, 9, 580808. [Google Scholar] [CrossRef]
- Liu, X.; Elgowainy, A.; Wang, M. Life cycle energy use and greenhouse gas emissions of ammonia production from renewable resources and industrial by-products. Green Chem. 2020, 22, 5751–5761. [Google Scholar] [CrossRef]
- Adeniyi, A.; Bello, I.; Mukaila, T.; Sarker, N.C.; Hammed, A. Trends in Biological Ammonia Production. BioTech 2023, 12, 41. [Google Scholar] [CrossRef]
- Hussin, F.; Aroua, M.K. Recent trends in the development of adsorption technologies for carbon dioxide capture: A brief literature and patent reviews (2014–2018). J. Clean. Prod. 2020, 253, 119707. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Lootah, M.A.; Sayed, E.T.; Wilberforce, T.; Alawadhi, H.; Yousef, B.A.; Olabi, A. Fuel cells for carbon capture applications. Sci. Total Environ. 2021, 769, 144243. [Google Scholar] [CrossRef]
- Bello, I.; Rasaq, N.; Adeniyi, A.; Hammed, A. Enzyme Aided Processing of Oil. Int. J. Halal Res. 2021, 3, 60–72. [Google Scholar] [CrossRef]
- Yüzbaşıoǧlu, A.E.; Tatarhan, A.H.; Gezerman, A.O. Decarbonization in ammonia production, new technological methods in industrial scale ammonia production and critical evaluations. Heliyon 2021, 7, e08257. [Google Scholar] [CrossRef]
- Nurdiawati, A.; Zaini, I.N.; Amin, M.; Sasongko, D.; Aziz, M. Microalgae-based coproduction of ammonia and power employing chemical looping process. Chem. Eng. Res. Des. 2019, 146, 311–323. [Google Scholar] [CrossRef]
- Boyd, E.S.; Peters, J.W. New insights into the evolutionary history of biological nitrogen fixation. Front. Microbiol. 2013, 4, 201. [Google Scholar] [CrossRef] [PubMed]
- Rapson, T.D.; Wood, C.C. Analysis of the Ammonia Production Rates by Nitrogenase. Catalysts 2022, 12, 844. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y.; Ma, B.; Wang, S.; Zhu, G. Anaerobic ammonium oxidation in traditional municipal wastewater treatment plants with low-strength ammonium loading: Widespread but overlooked. Water Res. 2015, 84, 66–75. [Google Scholar] [CrossRef]
- Pengpeng, W.; Tan, Z. Ammonia Assimilation in Rumen Bacteria: A Review. Anim. Biotechnol. 2013, 24, 107–128. [Google Scholar] [CrossRef]
- Rychlik, J.L.; Russell, J.B. Mathematical estimations of hyper-ammonia producing ruminal bacteria and evidence for bacterial antagonism that decreases ruminal ammonia production. FEMS Microbiol. Ecol. 2000, 32, 121–128. [Google Scholar] [CrossRef]
- Bach, A.; Calsamiglia, S.; Stern, M.D. Nitrogen Metabolism in the Rumen. J. Dairy Sci. 2005, 88, E9–E21. [Google Scholar] [CrossRef]
- TOPSOE. Ammonia Co-Production. Available online: https://www.topsoe.com/processes/ammonia/co-production (accessed on 23 June 2025).
- McCullough, C.D.; Schultze, M.; Vandenberg, J. Realizing Beneficial End Uses from Abandoned Pit Lakes. Minerals 2020, 10, 133. [Google Scholar] [CrossRef]
- Angelidaki, I.; Sanders, W. Assessment of the anaerobic biodegradability of macropollutants. Rev. Environ. Sci. Biotechnol. 2004, 3, 117–129. [Google Scholar] [CrossRef]
- Sialve, B.; Bernet, N.; Bernard, O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 2009, 27, 409–416. [Google Scholar] [CrossRef]
- Heaven, S.; Milledge, J.; Zhang, Y. Comments on ‘Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable’. Biotechnol. Adv. 2011, 29, 164–167. [Google Scholar] [CrossRef]
- Castagna, S.; Luca, D.D.; Lasagna, M. Eutrophication of Piedmont Quarry Lakes (North-Western Italy): Hydrogeological Factors, Evaluation of Trophic Levels and Management Strategies. J. Environ. Assess. Policy Manag. 2015, 17, 1550036. [Google Scholar] [CrossRef]
- Nwoba, E.; Ayre, J.; Moheimani, N.; Ubi, B.; Ogbonna, J. Growth comparison of microalgae in tubular photobioreactor and open pond for treating anaerobic digestion piggery effluent. Algal Res. 2018, 17, 268–276. [Google Scholar] [CrossRef]
- Eustance, E.; Wray, J.; Badvipour, S.; Sommerfeld, M. The effects of cultivation depth, areal density, and nutrient level on lipid accumulation of Scenedesmus Acutus Outdoor Raceway Ponds. J. Appl. Phycol. 2015, 28, 1459–1469. [Google Scholar] [CrossRef]
- Scott, J.; Boriah, V. Modeling Algae Growth in an Open-Channel Raceway. J. Comput. Biol. 2010, 17, 895–906. [Google Scholar] [CrossRef]
- Grasham, O.; Dupont, V.; Camargo-Valero, M.A.; García-Gutiérrez, P.; Cockerill, T. Combined ammonia recovery and solid oxide fuel cell use at wastewater treatment plants for energy and greenhouse gas emission improvements. Appl. Energy 2019, 240, 698–708. [Google Scholar] [CrossRef]
- Trifirò, F. Fuels from Biomass. Tec. Ital.-Ital. J. Eng. Sci. 2019, 63, 86. [Google Scholar] [CrossRef]
- Lucia, U.; Fino, D.; Grisolia, G. Thermoeconomic analysis of Earth system in relation to sustainability: A thermodynamic analysis of weather changes due to anthropic activities. J. Therm. Anal. Calorim. 2020; in press. [Google Scholar]
- Contiero, P.; Boffi, R.; Tagliabue, G.; Scaburri, A.; Tittarelli, A.; Bertoldi, M.; Borgini, A.; Favia, I.; Ruprecht, A.A.; Maiorino, A.; et al. A Case-Crossover Study to Investigate the Effects of Atmospheric Particulate Matter Concentrations, Season, and Air Temperature on Accident and Emergency Presentations for Cardiovascular Events in Northern Italy. Int. J. Environ. Res. Public Health 2019, 16, 4627. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef]
- Barman, S.C.; Kumar, N.; Singh, R.; Kisku, G.C.; Khan, A.H.; Kidwai, M.M.; Murthy, R.C.; Negi, M.P.S.; Pandey, P.; Verma, A.K.; et al. Assessment of urban air pollution and it’s probable health impact. J. Environ. Biol. 2010, 31, 913–920. [Google Scholar]
- Nigam, P.S.; Singh, A. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 2011, 37, 52–68. [Google Scholar] [CrossRef]
- Cuhum, H.L.; Overend, R.P. Biomass and renewable fuels. Fuel Process. Technol. 2001, 71, 187–195. [Google Scholar] [CrossRef]
- Catalán-Martínez, D.; Domine, M.E.; Serra, J.E. Liquid fuels from biomass: An energy self-sustained process integrating H2 recovery and liquid refining. Fuel 2018, 212, 353–363. [Google Scholar] [CrossRef]
- Lang, X.; Dalai, A.; Bakhshi, N.; Reaney, M.; Hertz, P. Preparation and characterization of bio-diesels from various bio-oils. Bioresour. Technol. 2001, 80, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.A.; Lavoie, J.M. From first- to third- generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Anim. Frontiers 2013, 2, 6–11. [Google Scholar] [CrossRef]
- Ministero dell’Ambiente e della Sicurezza Energetica. PIANO NAZIONALE INTEGRATO PER L’ENERGIA E IL CLIMA. 2024. Available online: https://www.mase.gov.it/portale/documents/d/guest/pniec_2024_revfin_01072024-errata-corrige-pulito-pdf (accessed on 23 June 2025).
- European Parliament and Council of the European Union. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018L2001 (accessed on 7 May 2025).
- Government of Italy. Decreto-Legge 1 marzo 2022, n. 17—Misure Urgenti per il Contenimento dei Costi dell’Energia e per lo Sviluppo Delle Energie Rinnovabili. 2022. Available online: https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.legge:2022;17 (accessed on 7 May 2025).
- Government of Italy. Decreto-Legge 24 febbraio 2023, n. 13—Disposizioni Urgenti per l’Attuazione del Piano Nazionale di Ripresa e Resilienza (PNRR). 2023. Available online: https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.legge:2023;13 (accessed on 7 May 2025).
- IEA Bioenergy. Implementation of Bioenergy in Italy—2024 Update; Country Report; IEA Bioenergy: Paris, France, 2024. [Google Scholar]
- Correa, D.; Beyer, H.L.; Fargione, J.E.; Hill, J.D.; Possingham, H.P.; Thomas-Hall, S.R.; Schenka, P.M. Towards the implementation of sustainable biofuel production systems. Renew. Sustain. Energy Rev. 2019, 107, 250–263. [Google Scholar] [CrossRef]
- Chowdhury, H.; Loganathan, B. Third-generation biofuels from microalgae: A review. Curr. Opin. Green Sustain. Chem. 2019, 20, 39–44. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G. Cyanobacteria and microalgae: Thermoeconomic considerations in biofuel production. Energies 2018, 11, 156. [Google Scholar] [CrossRef]
- Carriquiry, M.A.; Dub, X.; Timilsina, G.R. Second generation biofuels: Economics and policies. Energy Policy 2011, 39, 4222–4234. [Google Scholar] [CrossRef]
- Grasham, O.; Dupont, V.; Cockerill, T.; Camargo-Valero, M.A. Ammonia and Biogas from Anaerobic and Sewage Digestion for Novel Heat, Power and Transport Applications—A Techno-Economic and GHG Emissions Study for the United Kingdom. Energies 2022, 15, 2174. [Google Scholar] [CrossRef]
- Buck, B.H.; Buchholz, C.M. The offshore ring: A new system design for the open ocean aquaculture of macroalgae. J. Appl. Phycol. 2004, 16, 355–369. [Google Scholar] [CrossRef]
- Wellinger, A. Algal Biomass. Does it Save the World? Short Reflections; IEA Bioenergy: Paris, France, 2009. [Google Scholar]
- Grisolia, G.; Fino, D.; Lucia, U. Thermodynamic optimisation of the biofuel production based on mutualism. Energy Rep. 2020, 6, 1561–1571. [Google Scholar] [CrossRef]
- Zuorro, A.; García-Martínez, J.; Barajas-Solano, A. The Application of Catalytic Processes on the Production of Algae-Based Biofuels: A Review. Catalysts 2021, 11, 22. [Google Scholar] [CrossRef]
- Schenk, P.; Thomas-Hall, S.; Stephens, E.; Marx, U.; Mussgnug, J.; Posten, C.; Kruse, O.; Hankamer, B. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. BioEnergy Res. 2008, 1, 20–43. [Google Scholar] [CrossRef]
- Mata, T.; Martins, A.; Caetano, N. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef]
- Phukan, M.; Chutia, R.; Konwar, B.K.; Kataki, R. Microalgae Chlorella as a potential bio-energy feedstock. Appl. Energy 2011, 88, 3307–3312. [Google Scholar] [CrossRef]
- Demirbas, A. Use of algae as biofuel sources. Energy Convers. Manag. 2010, 51, 2738–2749. [Google Scholar] [CrossRef]
- Kothari, R.; Pathak, V.V.; Kumar, V.; Singh, D.P.; Tyagi, V.V. Experimental study for growth potential of unicellular algae in municipal wastewater for biomass production and nutrient removal. Appl. Energy 2014, 128, 1–8. [Google Scholar]
- Matamoros, V.; Gutiérrez, R. Algal-based systems for the removal of antibiotics from urban wastewater. Sci. Total Environ. 2015, 505, 1103–1111. [Google Scholar]
- El-Mohsnawy, E.; Abdel-Raouf, N.; Abo-Eleneen, M. Utilization of industrial wastewater for microalgae cultivation: Implications for bioenergy and environmental sustainability. Sustainability 2023, 15, 789. [Google Scholar]
- Hoeller, P.; Coppel, J. Energy Taxation and Price Distortion in Fossil Fuel Markets: Some Implications for Climate Change Policy; Working Paper n. 110; OECD, Economic Department in Paris: Paris, France, 1992. [Google Scholar]
Compound | Subscript in Chemical Formula | |||
---|---|---|---|---|
Proteins | 2.5 | 3.5 | 1.0 | 0.5 |
Carbohydrates | 6.0 | 10.0 | 0.5 | − |
Lipids | 57.0 | 104.0 | 6.0 | − |
Strain | p | |
---|---|---|
[g L−1 ] | [MJ ] | |
Arthrospira maxima | 0.23 | 18.72 |
Arthrospira platensis | 2.18 | 17.13 |
Botryococcus braunii | 0.02 | 14.37 |
Chlamydomonas rheinhardii | 1.41 | 20.81 |
Chlorella spp. | 1.26 | 24.78 |
Chlorella pyrenoidosa | 0.525 | 23.21 |
Chlorella vulgaris | 0.11 | 25.47 |
Haematococcus pluvialis | 0.055 | 22.12 |
Isochrysis galbana | 0.915 | 17.31 |
Scenedesmus obliquus | 0.039 | 21.74 |
Quantity | Pit-Lake ID Number | ||||||
---|---|---|---|---|---|---|---|
9 | 15 | 17 | 18 | 19 | 20 | 21 | |
Volume [ L] | 1300 | 170 | 190 | 120 | 100 | 150 | 6 |
Average depth [m] | 8 | 18 | 28 | 18 | 12 | 8 | 10 |
Strain | [ ] | ||||||
---|---|---|---|---|---|---|---|
Pit-Lake ID Number | |||||||
9 | 15 | 17 | 18 | 19 | 20 | 21 | |
Arthrospira maxima | 80.94 | 4.70 | 3.38 | 3.32 | 4.15 | 9.34 | 0.30 |
Arthrospira platensis | 583.32 | 33.90 | 24.36 | 23.93 | 29.91 | 67.31 | 2.15 |
Botryococcus braunii | 2.36 | 0.14 | 0.10 | 0.10 | 0.12 | 0.27 | 0.01 |
Chlamydomonas rheinhardii | 363.65 | 21.13 | 15.19 | 14.92 | 18.65 | 41.96 | 1.34 |
Chlorella spp. | 368.97 | 21.44 | 15.41 | 15.14 | 18.92 | 42.57 | 1.36 |
Chlorella pyrenoidosa | 165.58 | 9.62 | 6.91 | 6.79 | 8.49 | 19.11 | 0.61 |
Chlorella vulgaris | 32.21 | 1.87 | 1.35 | 1.32 | 1.65 | 3.72 | 0.12 |
Haematococcus pluvialis | 14.18 | 0.82 | 0.59 | 0.58 | 0.73 | 1.64 | 0.05 |
Isochrysis galbana | 132.74 | 7.71 | 5.54 | 5.45 | 6.81 | 15.32 | 0.49 |
Scenedesmus obliquus | 7.10 | 0.41 | 0.30 | 0.29 | 0.36 | 0.82 | 0.03 |
Strain | [ ] | ||||||
---|---|---|---|---|---|---|---|
Pit-Lake ID Number | |||||||
9 | 15 | 17 | 18 | 19 | 20 | 21 | |
Arthrospira maxima | 5492 | 319 | 229 | 225 | 282 | 634 | 20 |
Arthrospira platensis | 48,453 | 2816 | 2023 | 1988 | 2485 | 5591 | 179 |
Botryococcus braunii | 390 | 23 | 16 | 16 | 20 | 45 | 1 |
Chlamydomonas rheinhardii | 38,908 | 2261 | 1625 | 1596 | 1995 | 4489 | 144 |
Chlorella spp. | 41,675 | 2422 | 1740 | 1710 | 2137 | 4809 | 154 |
Chlorella pyrenoidosa | 16,015 | 931 | 669 | 657 | 821 | 1848 | 59 |
Chlorella vulgaris | 3750 | 218 | 157 | 154 | 192 | 433 | 14 |
Haematococcus pluvialis | 1611 | 94 | 67 | 66 | 83 | 186 | 6 |
Isochrysis galbana | 21,456 | 1247 | 896 | 880 | 1100 | 2476 | 79 |
Scenedesmus obliquus | 1154 | 67 | 48 | 47 | 59 | 133 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucia, U.; Grisolia, G. Preliminary Considerations on the Co-Production of Biomethane and Ammonia from Algae and Bacteria. Inventions 2025, 10, 47. https://doi.org/10.3390/inventions10040047
Lucia U, Grisolia G. Preliminary Considerations on the Co-Production of Biomethane and Ammonia from Algae and Bacteria. Inventions. 2025; 10(4):47. https://doi.org/10.3390/inventions10040047
Chicago/Turabian StyleLucia, Umberto, and Giulia Grisolia. 2025. "Preliminary Considerations on the Co-Production of Biomethane and Ammonia from Algae and Bacteria" Inventions 10, no. 4: 47. https://doi.org/10.3390/inventions10040047
APA StyleLucia, U., & Grisolia, G. (2025). Preliminary Considerations on the Co-Production of Biomethane and Ammonia from Algae and Bacteria. Inventions, 10(4), 47. https://doi.org/10.3390/inventions10040047