Evaluation of Traditional and Data-Driven Algorithms for Energy Disaggregation Under Sampling and Filtering Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Measurement Hardware
2.2. Datasets
- Reference Energy Disaggregation Dataset (REDD) [12], a public dataset used for energy disaggregation research.
- Minutely Power Dataset Almanac (AMPds) [13], a public dataset for load disaggregation and eco-feedback that includes data on the electricity, water, and natural gas consumption of residential households in Canada from 2012 to 2014.
- Electricity Consumption and Occupancy (ECO) dataset [16], which is used to evaluate the performance of NILM algorithms.
- Green Energy Consumption Dataset (GREEND) [17], which comprises data on household energy consumption in Italy and Austria.
2.3. Software Tools and Evaluation Metrics
- 1.
- Mean Absolute Error (MAE) (Equation (1)), which measures the average absolute difference between the predicted and actual power consumption of an appliance. Lower MAE values indicate better estimation performance,
- 2.
- Root Mean Squared Error (RMSE) (Equation (2)), which is like MAE, but gives greater weight to larger errors, represents the standard deviation of estimation errors,
- 3.
- F1-SCORE, which combines Precision (Equation (3)) and Recall (Equation (4)), assesses the accuracy in detecting ON/OFF events. A higher F1-SCORE reflects a better ability to correctly identify appliance operation states:
- 4.
- Normalized Disaggregation Error (NDE), which quantifies the total energy estimation error for each appliance, is normalized by actual consumption to enable fair comparisons,
2.4. Algorithms
- Combinatorial Optimization (CO). This algorithm performs an exhaustive search of all possible combinations of appliance states to find the one that best explains the aggregate signal. While it can yield good results in simple scenarios, its complexity grows exponentially with the number of devices and possible states, which limits its scalability [25].
- Hart85. Based on finite state machines, this method detects ON/OFF events using dynamic active/reactive power thresholds. It is susceptible to parameter configuration and signal quality, showing highly variable performance depending on the appliance type and experimental conditions [3].
- Mean. This method uses a moving average of the aggregate consumption signal over a time window to estimate the consumption of each appliance. It is notable for its simplicity, robustness, and low computational demand, although its accuracy may be limited for devices with complex or variable consumption patterns.
- Factorial Hidden Markov Model (FHMM) [26]. This probabilistic model uses the Viterbi algorithm to infer the most probable sequence of device states, considering temporal transitions and relationships between them, with complexity O(T·SN) [27]. Unlike the standard FHMM implementation in NILMTK, this version incorporates several optimizations to improve efficiency; it leverages parallel processing on multicore CPUs via multithreading, replaces Python 3.7.12 loops with vectorized NumPy operations, manages the state space more efficiently through probability precomputing and dynamic pruning, optimizes memory usage with adjustable data types and sparse array storage, and uses JIT compilation with Numba for critical routines. In contrast, the original NILMTK version relies on sequential, generic implementations and non-vectorized data structures, resulting in substantially lower computational performance and resource efficiency.
- WindowGRU. Implemented as a bidirectional GRU network that processes temporary windows of aggregate electrical consumption, WindowGRU uses recurring layers with ReLU activation to predict the state of appliances in the last temporal step, is integrated into the NILMTK experimentation API for cross-evaluation between datasets, and is typically trained with Adam (30 epochs, learning rate 1 × 10−3) under GPU requirements (TensorFlow-GPU + CUDA) and normalization preprocessing, although non-optimized implementations of the activation functions may limit its practical performance [21].
- Seq2Seq. This model implements an encoder–decoder-based deep neural network architecture, where a time window of the aggregated signal (e.g., 99 samples) is processed by the model to predict the corresponding sequence of consumption of an appliance, using recurrent and convolutional layers; each device has its own trained model, training is performed with normalized and batch data, and integration with the NILMTK API allows performance to be evaluated in different buildings and datasets in a flexible and reproducible way [21,28].
- Denoising Autoencoder (DAE). Fully convolutional in this implementation, it uses Conv1D layers in the encoder (e.g., 3 layers with 8/16/32 filters and kernel = 4) and a symmetric transposed decoder to capture temporal patterns, injecting Gaussian noise (σ = 0.1–0.3) into the aggregate input to strengthen the model, and optimizes a combined loss function that integrates the Mean Square Error (MSE) of reconstruction with L1 regularization over the weights (controlled by λ) to avoid overfitting. Training is with Adam (learning rate ~1 × 10−3) on time windows of 150–600 standardized samples, thus achieving disaggregation through sparsa and locally invariant latent representations [21].
- Recurrent Neural Networks (RNN). This model implements standard recurrent neural networks for energy disaggregation, processing temporal sequences of aggregate consumption through predefined windows (e.g., 100–600 samples). Each appliance has an independent RNN model trained with recurrent dense layers and ReLU activation, using Keras as a backend. The data are normalized and screened before training, which is performed with the Adam optimizer (learning rate ~1 × 10−3) and MSE loss function, integrated into the NILMTK API for cross-evaluation between buildings/datasets. The current implementation faces practical limitations due to version-specific dependencies (TensorFlow/Keras) and problems reported in the train–test division after migrating to internal Keras methods [21].
- Seq2Point. This model implements a CNN-based neural network that takes temporal windows of the aggregated signal (e.g., 99 samples) and predicts the consumption value of an appliance only at the center point of the window, using a sequential architecture of Conv1D, Dense, Dropout, and Flatten layers, trained with MSE loss function, data normalization, and hyperparameter configuration, such as window size, epoch number, and batch size, all integrated into NILMTK’s rapid experimentation API to facilitate training, evaluation, and comparison between devices and datasets [29].
2.5. Experimental Conditions
- Sampling rate. Tested at intervals ranging from 90 and 60 s to higher resolutions (1 s, 500 ms, 250 ms, and 125 ms).
- Harmonic content. By comparing DSUALM10H (with harmonics) and DSUALM10 (without them), the impact of harmonic components was assessed [18].
- Power filtering. The effect of applying aggregate power thresholds (10 W, 50 W, 100 W) was evaluated before disaggregation.
3. Results and Discussion
3.1. Evaluation Metrics
3.1.1. F1-SCORE
3.1.2. MAE
3.1.3. NDE
3.1.4. RMSE
3.2. Influence of Experimental Factors
3.2.1. Effect of Power Filtering
3.2.2. Effect of Type of Application
3.2.3. Effect of the Sampling Rate
3.2.4. Effect of Harmonic Content
3.3. Disaggregated Data and Execution Times
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Metric | Algorithm | EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer |
---|---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | FHMM | 354.42 | 185.36 | 25.34 | 52.20 | 238.14 | 221.24 | 226.21 | 15.17 | 17.41 | 22.22 |
CO | 646.49 | 239.28 | 18.12 | 44.82 | 223.13 | 397.39 | 566.38 | 16.55 | 34.98 | 27.12 | |
Mean | 864.16 | 186.88 | 20.46 | 39.05 | 238.39 | 380.81 | 457.31 | 14.44 | 29.44 | 23.86 | |
Hart85 | 597.70 | 143.10 | 125.59 | 117.37 | 190.18 | 281.99 | 397.07 | 121.80 | 111.55 | 118.88 | |
RMSE (W) | FHMM | 737.06 | 257.72 | 29.50 | 60.51 | 246.90 | 609.25 | 449.71 | 19.52 | 29.82 | 34.01 |
CO | 1000.95 | 294.46 | 23.68 | 54.70 | 337.63 | 884.72 | 729.60 | 20.95 | 43.99 | 34.48 | |
Mean | 896.58 | 235.31 | 20.75 | 39.64 | 247.11 | 591.49 | 507.14 | 15.18 | 31.22 | 25.51 | |
Hart85 | 1062.44 | 244.08 | 206.36 | 195.05 | 307.78 | 648.09 | 598.32 | 211.81 | 199.71 | 209.23 | |
F1 | FHMM | 0.69 | 0.57 | 0.36 | 0.63 | 0.26 | 0.44 | 0.71 | 0.47 | 0.67 | 0.18 |
CO | 0.39 | 0.51 | 0.77 | 0.44 | 0.36 | 0.17 | 0.33 | 0.75 | 0.41 | 0.50 | |
Mean | 0.51 | 0.63 | 0.95 | 0.63 | 0.26 | 0.18 | 0.54 | 0.81 | 0.51 | 0.54 | |
Hart85 | 0.00 | 0.48 | 0.43 | 0.55 | 0.00 | 0.00 | 0.24 | 0.37 | 0.58 | 0.40 | |
NDE | FHMM | 0.69 | 0.91 | 0.84 | 1.10 | 1.14 | 1.00 | 0.73 | 0.69 | 0.73 | 0.97 |
CO | 0.94 | 1.04 | 0.67 | 0.99 | 1.57 | 1.45 | 1.18 | 0.74 | 1.08 | 0.98 | |
Mean | 0.84 | 0.83 | 0.59 | 0.72 | 1.15 | 0.97 | 0.82 | 0.54 | 0.77 | 0.73 | |
Hart85 | 1.00 | 0.86 | 5.86 | 3.53 | 1.43 | 1.06 | 0.97 | 7.49 | 4.90 | 5.95 |
Metric | Algorithm | EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer |
---|---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | FHMM | 540.98 | 229.12 | 20.21 | 40.98 | 212.69 | 397.22 | 197.95 | 8.12 | 26.50 | 25.00 |
CO | 588.44 | 212.42 | 17.21 | 41.30 | 238.70 | 501.21 | 444.41 | 20.08 | 37.16 | 34.05 | |
Mean | 874.51 | 192.20 | 20.43 | 39.23 | 241.93 | 394.17 | 471.71 | 14.63 | 30.73 | 25.39 | |
Hart85 | 597.70 | 184.94 | 33.72 | 39.60 | 201.16 | 174.74 | 397.00 | 23.88 | 26.61 | 24.34 | |
RMSE (W) | FHMM | 975.05 | 307.53 | 20.57 | 55.44 | 358.10 | 967.18 | 435.45 | 14.88 | 41.11 | 37.55 |
CO | 924.22 | 283.05 | 22.74 | 50.43 | 364.84 | 936.05 | 634.70 | 24.23 | 45.41 | 40.59 | |
Mean | 908.80 | 238.18 | 20.81 | 40.22 | 251.83 | 622.33 | 517.83 | 15.55 | 32.09 | 26.86 | |
Hart85 | 1072.45 | 285.51 | 35.30 | 55.59 | 319.34 | 639.58 | 600.55 | 28.48 | 41.45 | 36.17 | |
F1 | FHMM | 0.59 | 0.43 | 0.96 | 0.45 | 0.24 | 0.00 | 0.67 | 0.81 | 0.50 | 0.49 |
CO | 0.50 | 0.42 | 0.81 | 0.65 | 0.31 | 0.29 | 0.43 | 0.54 | 0.44 | 0.46 | |
Mean | 0.48 | 0.60 | 0.96 | 0.61 | 0.24 | 0.14 | 0.50 | 0.78 | 0.48 | 0.50 | |
Hart85 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | 0.00 | |
NDE | FHMM | 0.91 | 1.08 | 0.58 | 1.00 | 1.62 | 1.51 | 0.69 | 0.52 | 0.99 | 1.04 |
CO | 0.86 | 0.99 | 0.64 | 0.91 | 1.65 | 1.46 | 1.01 | 0.85 | 1.10 | 1.12 | |
Mean | 0.85 | 0.83 | 0.59 | 0.72 | 1.14 | 0.97 | 0.83 | 0.55 | 0.77 | 0.74 | |
Hart85 | 1.00 | 1.00 | 1.00 | 1.00 | 1.45 | 1.00 | 0.96 | 1.00 | 1.00 | 1.00 |
Metric | Algorithm | EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer |
---|---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | FHMM | 270.94 | 158.99 | 19.25 | 30.22 | 220.82 | 275.37 | 158.92 | 25.25 | 37.72 | 38.40 |
CO | 428.47 | 228.66 | 17.59 | 40.18 | 222.26 | 354.78 | 420.92 | 17.33 | 41.53 | 40.24 | |
Mean | 905.79 | 196.08 | 20.80 | 41.08 | 249.24 | 394.17 | 491.82 | 15.68 | 31.69 | 26.38 | |
Hart85 | 588.75 | 184.94 | 33.72 | 39.60 | 83.13 | 424.81 | 490.24 | 23.88 | 26.61 | 24.34 | |
RMSE (W) | FHMM | 700.01 | 262.26 | 25.71 | 48.21 | 377.24 | 805.02 | 412.83 | 28.69 | 51.30 | 47.48 |
CO | 755.60 | 319.00 | 22.39 | 52.48 | 351.14 | 746.42 | 634.23 | 21.65 | 53.74 | 47.91 | |
Mean | 931.39 | 252.93 | 21.00 | 41.20 | 258.85 | 639.07 | 536.62 | 16.18 | 33.75 | 28.53 | |
Hart85 | 906.99 | 297.93 | 35.42 | 56.31 | 228.76 | 735.33 | 671.09 | 28.83 | 42.75 | 37.43 | |
F1 | FHMM | 0.74 | 0.58 | 0.63 | 0.64 | 0.41 | 0.49 | 0.73 | 0.25 | 0.30 | 0.31 |
CO | 0.68 | 0.51 | 0.80 | 0.50 | 0.27 | 0.19 | 0.45 | 0.65 | 0.44 | 0.41 | |
Mean | 0.47 | 0.58 | 0.95 | 0.59 | 0.23 | 0.14 | 0.47 | 0.75 | 0.47 | 0.47 | |
Hart85 | 0.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.28 | 0.00 | 0.00 | 0.00 | |
NDE | FHMM | 0.64 | 0.88 | 0.73 | 0.86 | 1.65 | 1.23 | 0.64 | 1.00 | 1.20 | 1.27 |
CO | 0.69 | 1.07 | 0.63 | 0.93 | 1.54 | 1.14 | 0.99 | 0.75 | 1.26 | 1.28 | |
Mean | 0.85 | 0.85 | 0.59 | 0.73 | 1.13 | 0.97 | 0.83 | 0.56 | 0.79 | 0.76 | |
Hart85 | 0.83 | 1.00 | 1.00 | 1.00 | 1.00 | 1.12 | 1.04 | 1.00 | 1.00 | 1.00 |
Metric | Algorithm | EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer |
---|---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | FHMM | 443.89 | 342.70 | 20.25 | 35.90 | 247.73 | 208.33 | 522.40 | 18.58 | 31.71 | 24.26 |
CO | 560.63 | 292.57 | 20.72 | 41.56 | 259.81 | 391.28 | 428.68 | 16.53 | 131.05 | 109.20 | |
Mean | 910.21 | 217.59 | 20.89 | 41.34 | 250.08 | 398.60 | 496.99 | 15.89 | 31.91 | 26.84 | |
Hart85 | 423.29 | 184.94 | 33.72 | 39.60 | 83.13 | 174.74 | 426.21 | 23.88 | 26.61 | 24.34 | |
RMSE (W) | FHMM | 944.11 | 588.18 | 26.41 | 53.59 | 407.12 | 733.94 | 787.80 | 24.49 | 36.51 | 43.26 |
CO | 935.99 | 555.17 | 25.04 | 55.60 | 415.57 | 816.30 | 656.10 | 23.21 | 238.47 | 189.35 | |
Mean | 935.22 | 416.91 | 21.06 | 41.42 | 259.79 | 649.81 | 541.39 | 16.38 | 36.66 | 35.86 | |
Hart85 | 641.18 | 445.66 | 35.46 | 56.46 | 229.72 | 666.32 | 634.90 | 28.94 | 45.08 | 43.28 | |
F1 | FHMM | 0.49 | 0.27 | 0.60 | 0.58 | 0.31 | 0.60 | 0.26 | 0.53 | 0.46 | 0.54 |
CO | 0.49 | 0.43 | 0.78 | 0.42 | 0.29 | 0.27 | 0.36 | 0.65 | 0.32 | 0.33 | |
Mean | 0.46 | 0.56 | 0.95 | 0.58 | 0.21 | 0.12 | 0.46 | 0.74 | 0.46 | 0.46 | |
Hart85 | 0.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | |
NDE | FHMM | 0.86 | 1.32 | 0.75 | 0.95 | 1.77 | 1.10 | 1.22 | 0.85 | 0.81 | 1.00 |
CO | 0.86 | 1.25 | 0.71 | 0.99 | 1.81 | 1.23 | 1.01 | 0.80 | 5.29 | 4.38 | |
Mean | 0.85 | 0.94 | 0.59 | 0.73 | 1.13 | 0.98 | 0.84 | 0.57 | 0.81 | 0.83 | |
Hart85 | 0.59 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 |
Metric | Algorithm | EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer |
---|---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | FHMM | 566.98 | 418.88 | 20.68 | 44.82 | 152.62 | 468.49 | 496.90 | 14.37 | 29.03 | 31.24 |
CO | 550.79 | 299.35 | 14.99 | 39.49 | 222.44 | 476.96 | 392.84 | 20.52 | 151.17 | 109.34 | |
Mean | 910.21 | 217.59 | 20.89 | 41.34 | 250.08 | 398.60 | 496.99 | 15.89 | 31.91 | 26.84 | |
Hart85 | 423.29 | 184.94 | 33.72 | 39.60 | 83.13 | 174.74 | 426.21 | 23.88 | 26.61 | 24.34 | |
RMSE (W) | FHMM | 1068.42 | 611.31 | 20.83 | 60.42 | 318.94 | 1103.74 | 541.30 | 21.51 | 47.47 | 47.56 |
CO | 939.45 | 559.72 | 22.47 | 52.56 | 341.42 | 935.18 | 634.24 | 26.39 | 301.47 | 193.86 | |
Mean | 935.22 | 416.91 | 21.06 | 41.42 | 259.79 | 649.81 | 541.39 | 16.38 | 36.66 | 35.86 | |
Hart85 | 641.18 | 445.66 | 35.46 | 56.46 | 229.72 | 666.32 | 634.90 | 28.94 | 45.08 | 43.28 | |
F1 | FHMM | 0.42 | 0.38 | 0.95 | 0.23 | 0.14 | 0.00 | 0.46 | 0.59 | 0.40 | 0.15 |
CO | 0.56 | 0.39 | 0.77 | 0.51 | 0.20 | 0.16 | 0.45 | 0.54 | 0.37 | 0.39 | |
Mean | 0.46 | 0.56 | 0.95 | 0.58 | 0.21 | 0.12 | 0.46 | 0.74 | 0.45 | 0.46 | |
Hart85 | 0.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | |
NDE | FHMM | 0.98 | 1.37 | 0.59 | 1.07 | 1.39 | 1.66 | 0.84 | 0.74 | 1.05 | 1.10 |
CO | 0.86 | 1.26 | 0.63 | 0.93 | 1.49 | 1.40 | 0.98 | 0.91 | 6.69 | 4.48 | |
Mean | 0.85 | 0.94 | 0.59 | 0.73 | 1.13 | 0.98 | 0.84 | 0.57 | 0.81 | 0.83 | |
Hart85 | 0.59 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 |
Metric | Algorithm | EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer |
---|---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | FHMM | 443.89 | 342.70 | 20.33 | 35.87 | 247.73 | 208.33 | 522.40 | 18.60 | 31.67 | 24.34 |
CO | 518.94 | 268.71 | 20.92 | 45.51 | 188.73 | 444.67 | 406.76 | 16.34 | 179.36 | 100.08 | |
Mean | 910.21 | 217.59 | 20.89 | 41.34 | 250.08 | 398.60 | 496.99 | 15.89 | 31.91 | 26.84 | |
Hart85 | 423.29 | 184.94 | 33.72 | 39.60 | 83.13 | 174.74 | 426.21 | 23.88 | 26.61 | 24.34 | |
RMSE (W) | FHMM | 944.11 | 588.18 | 26.46 | 53.57 | 407.12 | 733.94 | 787.80 | 24.51 | 36.51 | 43.31 |
CO | 895.57 | 526.80 | 25.36 | 55.85 | 312.39 | 886.49 | 650.14 | 22.98 | 341.74 | 180.05 | |
Mean | 935.22 | 416.91 | 21.06 | 41.42 | 259.79 | 649.81 | 541.39 | 16.38 | 36.66 | 35.86 | |
Hart85 | 641.18 | 445.66 | 35.46 | 56.46 | 229.72 | 666.32 | 634.90 | 28.94 | 45.08 | 43.28 | |
F1 | FHMM | 0.49 | 0.27 | 0.60 | 0.58 | 0.31 | 0.60 | 0.26 | 0.52 | 0.45 | 0.54 |
CO | 0.54 | 0.46 | 0.76 | 0.48 | 0.23 | 0.21 | 0.45 | 0.67 | 0.38 | 0.34 | |
Mean | 0.46 | 0.56 | 0.95 | 0.58 | 0.21 | 0.12 | 0.46 | 0.74 | 0.45 | 0.46 | |
Hart85 | 0.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | |
NDE | FHMM | 0.86 | 1.32 | 0.75 | 0.95 | 1.77 | 1.10 | 1.22 | 0.85 | 0.81 | 1.00 |
CO | 0.82 | 1.18 | 0.72 | 0.99 | 1.36 | 1.33 | 1.00 | 0.79 | 7.58 | 4.16 | |
Mean | 0.85 | 0.94 | 0.59 | 0.73 | 1.13 | 0.98 | 0.84 | 0.57 | 0.81 | 0.83 | |
Hart85 | 0.59 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 |
Metric | Algorithm | EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer |
---|---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | FHMM | 322.33 | 353.97 | 19.23 | 26.42 | 199.36 | 82.46 | 463.42 | 18.31 | 26.97 | 34.53 |
CO | 560.15 | 261.43 | 19.80 | 45.39 | 260.42 | 390.16 | 428.06 | 16.14 | 138.91 | 98.95 | |
Mean | 910.21 | 217.59 | 20.89 | 41.34 | 250.08 | 398.60 | 496.99 | 15.89 | 31.91 | 26.84 | |
Hart85 | 423.29 | 184.94 | 33.72 | 39.60 | 83.13 | 174.74 | 426.21 | 23.88 | 26.61 | 24.34 | |
RMSE (W) | FHMM | 801.09 | 594.44 | 25.71 | 45.84 | 364.99 | 458.77 | 741.95 | 24.42 | 45.50 | 49.34 |
CO | 922.21 | 517.61 | 24.14 | 55.30 | 415.71 | 839.33 | 655.60 | 22.83 | 275.43 | 183.00 | |
Mean | 935.22 | 416.91 | 21.06 | 41.42 | 259.79 | 649.81 | 541.39 | 16.38 | 36.66 | 35.86 | |
Hart85 | 641.18 | 445.66 | 35.46 | 56.46 | 229.72 | 666.32 | 634.90 | 28.94 | 45.08 | 43.28 | |
F1 | FHMM | 0.66 | 0.29 | 0.61 | 0.64 | 0.38 | 0.81 | 0.38 | 0.48 | 0.56 | 0.39 |
CO | 0.52 | 0.37 | 0.77 | 0.50 | 0.30 | 0.21 | 0.43 | 0.67 | 0.37 | 0.40 | |
Mean | 0.46 | 0.56 | 0.95 | 0.58 | 0.21 | 0.12 | 0.46 | 0.74 | 0.45 | 0.46 | |
Hart85 | 0.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | |
NDE | FHMM | 0.73 | 1.33 | 0.73 | 0.81 | 1.59 | 0.69 | 1.15 | 0.84 | 1.01 | 1.14 |
CO | 0.84 | 1.16 | 0.68 | 0.98 | 1.81 | 1.26 | 1.01 | 0.79 | 6.11 | 4.23 | |
Mean | 0.85 | 0.94 | 0.59 | 0.73 | 1.13 | 0.98 | 0.84 | 0.57 | 0.81 | 0.83 | |
Hart85 | 0.59 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 |
Metric | Algorithm | EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer |
---|---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | FHMM | 463.18 | 233.01 | 15.37 | 32.27 | 196.84 | 559.81 | 227.07 | 18.06 | 35.88 | 26.64 |
CO | 456.30 | 249.37 | 17.33 | 30.14 | 214.61 | 170.71 | 425.78 | 18.62 | 36.39 | 28.26 | |
Mean | 853.69 | 174.59 | 20.41 | 38.08 | 245.06 | 391.05 | 426.06 | 13.53 | 27.97 | 22.55 | |
Hart85 | 583.62 | 159.26 | 57.76 | 51.44 | 134.76 | 208.15 | 358.44 | 53.29 | 43.50 | 48.99 | |
RMSE (W) | FHMM | 862.95 | 298.61 | 22.07 | 47.27 | 333.08 | 1052.38 | 392.34 | 22.77 | 45.05 | 35.36 |
CO | 797.28 | 305.28 | 21.99 | 41.20 | 319.84 | 621.12 | 604.56 | 22.35 | 45.00 | 35.14 | |
Mean | 881.07 | 226.56 | 20.74 | 39.06 | 254.08 | 605.13 | 480.31 | 14.66 | 30.32 | 24.31 | |
Hart85 | 1038.53 | 238.02 | 75.32 | 71.34 | 251.77 | 626.67 | 577.46 | 79.29 | 69.23 | 76.12 | |
F1 | FHMM | 0.53 | 0.32 | 0.72 | 0.59 | 0.50 | 0.00 | 0.60 | 0.63 | 0.32 | 0.62 |
CO | 0.70 | 0.34 | 0.83 | 0.67 | 0.32 | 0.00 | 0.53 | 0.76 | 0.53 | 0.65 | |
Mean | 0.49 | 0.70 | 0.94 | 0.63 | 0.30 | 0.13 | 0.60 | 0.81 | 0.56 | 0.60 | |
Hart85 | 0.00 | 0.48 | 0.39 | 0.53 | 0.00 | 0.00 | 0.22 | 0.32 | 0.59 | 0.44 | |
NDE | FHMM | 0.83 | 1.09 | 0.63 | 0.85 | 1.40 | 1.69 | 0.66 | 0.83 | 1.13 | 1.04 |
CO | 0.77 | 1.11 | 0.62 | 0.74 | 1.35 | 1.00 | 1.02 | 0.81 | 1.13 | 1.03 | |
Mean | 0.85 | 0.83 | 0.59 | 0.70 | 1.07 | 0.97 | 0.81 | 0.53 | 0.76 | 0.72 | |
Hart85 | 1.00 | 0.87 | 2.13 | 1.28 | 1.06 | 1.01 | 0.97 | 2.87 | 1.74 | 2.24 |
Metric | Algorithm | EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer |
---|---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | FHMM | 684.08 | 153.69 | 25.42 | 43.44 | 137.02 | 476.60 | 195.71 | 19.02 | 27.58 | 26.01 |
CO | 646.49 | 239.28 | 18.12 | 44.82 | 223.13 | 397.39 | 566.38 | 16.55 | 34.98 | 27.12 | |
Mean | 864.16 | 186.88 | 20.46 | 39.05 | 238.39 | 380.81 | 457.31 | 14.44 | 29.44 | 23.86 | |
Hart85 | 597.70 | 143.10 | 125.59 | 117.37 | 190.18 | 281.99 | 397.07 | 121.80 | 111.55 | 118.88 | |
RMSE (W) | FHMM | 1018.62 | 234.54 | 28.73 | 56.13 | 284.43 | 1005.85 | 413.97 | 22.62 | 42.16 | 36.80 |
CO | 1000.95 | 294.46 | 23.68 | 54.70 | 337.63 | 884.72 | 729.60 | 20.95 | 43.99 | 34.48 | |
Mean | 896.58 | 235.31 | 20.75 | 39.64 | 247.11 | 591.49 | 507.14 | 15.18 | 31.22 | 25.51 | |
Hart85 | 1062.44 | 244.08 | 206.36 | 195.05 | 307.78 | 648.09 | 598.32 | 211.81 | 199.71 | 209.23 | |
F1 | FHMM | 0.51 | 0.67 | 0.28 | 0.37 | 0.43 | 0.00 | 0.72 | 0.32 | 0.10 | 0.16 |
CO | 0.38 | 0.51 | 0.77 | 0.43 | 0.36 | 0.17 | 0.33 | 0.75 | 0.41 | 0.50 | |
Mean | 0.51 | 0.63 | 0.95 | 0.63 | 0.26 | 0.18 | 0.54 | 0.81 | 0.51 | 0.54 | |
Hart85 | 0.00 | 0.48 | 0.43 | 0.55 | 0.00 | 0.00 | 0.24 | 0.37 | 0.58 | 0.40 | |
NDE | FHMM | 0.96 | 0.83 | 0.82 | 1.02 | 1.32 | 1.65 | 0.67 | 0.80 | 1.03 | 1.05 |
CO | 0.94 | 1.04 | 0.67 | 0.99 | 1.56 | 1.45 | 1.18 | 0.74 | 1.08 | 0.98 | |
Mean | 0.84 | 0.83 | 0.59 | 0.72 | 1.15 | 0.97 | 0.82 | 0.54 | 0.77 | 0.73 | |
Hart85 | 1.00 | 0.86 | 5.85 | 3.53 | 1.43 | 1.06 | 0.97 | 7.49 | 4.90 | 5.95 |
Metric | Algorithm | EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer |
---|---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | FHMM | 537.34 | 249.81 | 14.51 | 38.16 | 225.38 | 397.22 | 184.59 | 17.05 | 25.56 | 35.89 |
CO | 588.44 | 212.42 | 17.21 | 41.30 | 238.70 | 501.21 | 444.41 | 20.08 | 37.16 | 34.05 | |
Mean | 874.51 | 192.20 | 20.43 | 39.23 | 241.93 | 394.17 | 471.71 | 14.63 | 30.73 | 25.39 | |
Hart85 | 597.70 | 184.94 | 33.72 | 39.60 | 201.16 | 174.74 | 397.00 | 23.88 | 26.61 | 24.34 | |
RMSE (W) | FHMM | 971.60 | 324.67 | 22.03 | 53.36 | 375.21 | 967.18 | 418.28 | 22.48 | 40.71 | 44.45 |
CO | 924.22 | 283.05 | 22.74 | 50.43 | 364.84 | 936.05 | 634.70 | 24.23 | 45.41 | 40.59 | |
Mean | 908.80 | 238.18 | 20.81 | 40.22 | 251.83 | 622.33 | 517.83 | 15.55 | 32.09 | 26.86 | |
Hart85 | 1072.45 | 285.51 | 35.30 | 55.59 | 319.34 | 639.58 | 600.55 | 28.48 | 41.45 | 36.17 | |
F1 | FHMM | 0.62 | 0.32 | 0.72 | 0.49 | 0.12 | 0.00 | 0.68 | 0.46 | 0.53 | 0.38 |
CO | 0.50 | 0.42 | 0.81 | 0.65 | 0.31 | 0.29 | 0.43 | 0.53 | 0.44 | 0.45 | |
Mean | 0.48 | 0.60 | 0.96 | 0.61 | 0.24 | 0.14 | 0.50 | 0.78 | 0.48 | 0.50 | |
Hart85 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | 0.00 | |
NDE | FHMM | 0.91 | 1.14 | 0.62 | 0.96 | 1.70 | 1.51 | 0.67 | 0.79 | 0.98 | 1.23 |
CO | 0.86 | 0.99 | 0.64 | 0.91 | 1.65 | 1.46 | 1.01 | 0.85 | 1.10 | 1.12 | |
Mean | 0.85 | 0.83 | 0.59 | 0.72 | 1.14 | 0.97 | 0.82 | 0.55 | 0.77 | 0.74 | |
Hart85 | 1.00 | 1.00 | 1.00 | 1.00 | 1.45 | 1.00 | 0.96 | 1.00 | 1.00 | 1.00 |
Metric | Algorithm | EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer |
---|---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | FHMM | 412.52 | 293.62 | 19.70 | 51.50 | 181.65 | 395.56 | 491.77 | 15.66 | 29.54 | 26.51 |
CO | 491.85 | 264.23 | 17.84 | 42.04 | 211.51 | 421.32 | 434.90 | 17.86 | 42.88 | 40.10 | |
Mean | 905.79 | 196.08 | 20.80 | 41.08 | 249.24 | 394.17 | 491.82 | 15.68 | 31.69 | 26.38 | |
Hart85 | 588.75 | 184.94 | 33.72 | 39.60 | 83.13 | 424.81 | 490.24 | 23.88 | 26.61 | 24.34 | |
RMSE (W) | FHMM | 870.97 | 353.94 | 26.20 | 64.09 | 344.96 | 991.87 | 536.55 | 16.19 | 45.52 | 28.55 |
CO | 860.52 | 349.78 | 21.97 | 54.01 | 325.13 | 847.40 | 638.80 | 22.02 | 55.32 | 48.29 | |
Mean | 931.39 | 252.93 | 21.00 | 41.20 | 258.85 | 639.07 | 536.62 | 16.18 | 33.75 | 28.53 | |
Hart85 | 906.99 | 297.93 | 35.42 | 56.31 | 228.76 | 735.33 | 671.09 | 28.83 | 42.75 | 37.43 | |
F1 | FHMM | 0.67 | 0.32 | 0.59 | 0.19 | 0.04 | 0.00 | 0.47 | 0.75 | 0.45 | 0.47 |
CO | 0.56 | 0.40 | 0.81 | 0.48 | 0.34 | 0.09 | 0.41 | 0.66 | 0.43 | 0.35 | |
Mean | 0.47 | 0.58 | 0.95 | 0.59 | 0.23 | 0.14 | 0.47 | 0.75 | 0.47 | 0.47 | |
Hart85 | 0.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.28 | 0.00 | 0.00 | 0.00 | |
NDE | FHMM | 0.80 | 1.19 | 0.74 | 1.14 | 1.51 | 1.51 | 0.83 | 0.56 | 1.06 | 0.76 |
CO | 0.79 | 1.17 | 0.62 | 0.96 | 1.42 | 1.29 | 0.99 | 0.76 | 1.29 | 1.29 | |
Mean | 0.85 | 0.85 | 0.59 | 0.73 | 1.13 | 0.97 | 0.83 | 0.56 | 0.79 | 0.76 | |
Hart85 | 0.83 | 1.00 | 1.00 | 1.00 | 1.00 | 1.12 | 1.04 | 1.00 | 1.00 | 1.00 |
Metric | Algorithm | EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer |
---|---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | FHMM | 322.33 | 353.97 | 18.56 | 26.45 | 199.36 | 82.46 | 463.42 | 18.91 | 28.20 | 34.55 |
CO | 553.66 | 275.81 | 16.33 | 35.77 | 264.40 | 355.04 | 411.24 | 18.14 | 155.15 | 103.80 | |
Mean | 910.21 | 217.59 | 20.89 | 41.34 | 250.08 | 398.60 | 496.99 | 15.89 | 31.91 | 26.84 | |
Hart85 | 423.29 | 184.94 | 33.72 | 39.60 | 83.13 | 174.74 | 426.21 | 23.88 | 26.61 | 24.34 | |
RMSE (W) | FHMM | 801.09 | 594.44 | 25.21 | 45.87 | 364.99 | 458.77 | 741.95 | 24.82 | 46.23 | 49.64 |
CO | 914.17 | 534.73 | 23.77 | 49.07 | 419.65 | 785.20 | 647.23 | 24.61 | 296.09 | 184.01 | |
Mean | 935.22 | 416.91 | 21.06 | 41.42 | 259.79 | 649.81 | 541.39 | 16.38 | 36.66 | 35.86 | |
Hart85 | 641.18 | 445.66 | 35.46 | 56.46 | 229.72 | 666.32 | 634.90 | 28.94 | 45.08 | 43.28 | |
F1 | FHMM | 0.66 | 0.29 | 0.62 | 0.64 | 0.38 | 0.81 | 0.38 | 0.46 | 0.55 | 0.38 |
CO | 0.54 | 0.39 | 0.74 | 0.53 | 0.26 | 0.24 | 0.43 | 0.58 | 0.43 | 0.39 | |
Mean | 0.46 | 0.56 | 0.95 | 0.58 | 0.21 | 0.12 | 0.46 | 0.74 | 0.45 | 0.46 | |
Hart85 | 0.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | |
NDE | FHMM | 0.73 | 1.33 | 0.71 | 0.81 | 1.59 | 0.69 | 1.15 | 0.86 | 1.03 | 1.15 |
CO | 0.84 | 1.20 | 0.67 | 0.87 | 1.83 | 1.18 | 1.00 | 0.85 | 6.57 | 4.25 | |
Mean | 0.85 | 0.94 | 0.59 | 0.73 | 1.13 | 0.98 | 0.84 | 0.57 | 0.81 | 0.83 | |
Hart85 | 0.59 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 |
Metric | Algorithm | EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer |
---|---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | FHMM | 512.31 | 339.54 | 20.68 | 41.27 | 274.60 | 321.51 | 584.11 | 16.45 | 37.14 | 12.75 |
CO | 552.22 | 284.78 | 14.54 | 44.67 | 209.34 | 381.89 | 366.92 | 19.28 | 140.38 | 100.55 | |
Mean | 910.21 | 217.59 | 20.89 | 41.34 | 250.08 | 398.60 | 496.99 | 15.89 | 31.91 | 26.84 | |
Hart85 | 423.29 | 184.94 | 33.72 | 39.60 | 83.13 | 174.74 | 426.21 | 23.88 | 26.61 | 24.34 | |
RMSE (W) | FHMM | 1012.74 | 587.03 | 20.83 | 41.33 | 428.77 | 913.30 | 833.08 | 23.05 | 52.62 | 34.53 |
CO | 926.43 | 549.83 | 22.16 | 55.96 | 332.86 | 846.11 | 611.52 | 23.88 | 277.65 | 169.94 | |
Mean | 935.22 | 416.91 | 21.06 | 41.42 | 259.79 | 649.81 | 541.39 | 16.38 | 36.66 | 35.86 | |
Hart85 | 641.18 | 445.66 | 35.46 | 56.46 | 229.72 | 666.32 | 634.90 | 28.94 | 45.08 | 43.28 | |
F1 | FHMM | 0.39 | 0.26 | 0.95 | 0.58 | 0.35 | 0.45 | 0.06 | 0.54 | 0.45 | 0.74 |
CO | 0.55 | 0.50 | 0.78 | 0.46 | 0.25 | 0.09 | 0.52 | 0.61 | 0.42 | 0.35 | |
Mean | 0.46 | 0.56 | 0.95 | 0.58 | 0.21 | 0.12 | 0.46 | 0.74 | 0.46 | 0.46 | |
Hart85 | 0.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | |
NDE | FHMM | 0.93 | 1.32 | 0.59 | 0.73 | 1.87 | 1.37 | 1.29 | 0.80 | 1.17 | 0.80 |
CO | 0.85 | 1.23 | 0.63 | 0.99 | 1.45 | 1.27 | 0.94 | 0.83 | 6.16 | 3.93 | |
Mean | 0.85 | 0.94 | 0.59 | 0.73 | 1.13 | 0.98 | 0.84 | 0.57 | 0.81 | 0.83 | |
Hart85 | 0.59 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 |
Metric | Algorithm | EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer |
---|---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | FHMM | 440.61 | 340.97 | 20.38 | 35.84 | 248.01 | 209.39 | 519.99 | 18.91 | 31.67 | 24.66 |
CO | 544.15 | 298.66 | 15.60 | 38.32 | 235.47 | 421.72 | 446.45 | 19.17 | 173.72 | 116.68 | |
Mean | 910.21 | 217.59 | 20.89 | 41.34 | 250.08 | 398.60 | 496.99 | 15.89 | 31.91 | 26.84 | |
Hart85 | 423.29 | 184.94 | 33.72 | 39.60 | 83.13 | 174.74 | 426.21 | 23.88 | 26.61 | 24.34 | |
RMSE (W) | FHMM | 940.44 | 586.92 | 26.50 | 53.54 | 407.34 | 735.84 | 785.98 | 24.71 | 36.47 | 43.54 |
CO | 929.99 | 561.18 | 23.02 | 51.34 | 359.32 | 872.96 | 680.65 | 25.37 | 320.92 | 210.87 | |
Mean | 935.22 | 416.91 | 21.06 | 41.42 | 259.79 | 649.81 | 541.39 | 16.38 | 36.66 | 35.86 | |
Hart85 | 641.18 | 445.66 | 35.46 | 56.46 | 229.72 | 666.32 | 634.90 | 28.94 | 45.08 | 43.28 | |
F1 | FHMM | 0.50 | 0.27 | 0.60 | 0.58 | 0.31 | 0.60 | 0.26 | 0.51 | 0.46 | 0.54 |
CO | 0.53 | 0.43 | 0.76 | 0.54 | 0.26 | 0.17 | 0.42 | 0.59 | 0.35 | 0.33 | |
Mean | 0.46 | 0.56 | 0.95 | 0.58 | 0.21 | 0.12 | 0.46 | 0.74 | 0.46 | 0.46 | |
Hart85 | 0.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | |
NDE | FHMM | 0.86 | 1.32 | 0.75 | 0.95 | 1.77 | 1.10 | 1.21 | 0.85 | 0.81 | 1.01 |
CO | 0.85 | 1.26 | 0.65 | 0.91 | 1.56 | 1.31 | 1.05 | 0.88 | 7.12 | 4.87 | |
Mean | 0.85 | 0.94 | 0.59 | 0.73 | 1.13 | 0.98 | 0.84 | 0.57 | 0.81 | 0.83 | |
Hart85 | 0.59 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 |
Metric | Algorithm | EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer |
---|---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | FHMM | 228.21 | 288.47 | 24.55 | 52.84 | 249.93 | 415.60 | 272.64 | 15.87 | 30.03 | 29.22 |
CO | 535.97 | 283.38 | 15.09 | 42.71 | 175.60 | 441.17 | 433.95 | 20.75 | 151.55 | 115.86 | |
Mean | 910.21 | 217.59 | 20.89 | 41.34 | 250.08 | 398.60 | 496.99 | 15.89 | 31.91 | 26.84 | |
Hart85 | 423.29 | 184.94 | 33.72 | 39.60 | 83.13 | 174.74 | 426.21 | 23.88 | 26.61 | 24.34 | |
RMSE (W) | FHMM | 669.25 | 527.95 | 29.23 | 65.59 | 259.68 | 1038.44 | 564.40 | 16.38 | 47.85 | 46.53 |
CO | 944.00 | 543.46 | 22.64 | 53.63 | 297.29 | 896.11 | 653.57 | 26.45 | 293.14 | 199.79 | |
Mean | 935.22 | 416.91 | 21.06 | 41.42 | 259.79 | 649.81 | 541.39 | 16.38 | 36.66 | 35.86 | |
Hart85 | 641.18 | 445.66 | 35.46 | 56.46 | 229.72 | 666.32 | 634.90 | 28.94 | 45.08 | 43.28 | |
F1 | FHMM | 0.78 | 0.19 | 0.41 | 0.10 | 0.21 | 0.31 | 0.58 | 0.74 | 0.25 | 0.16 |
CO | 0.57 | 0.42 | 0.77 | 0.56 | 0.22 | 0.25 | 0.41 | 0.54 | 0.44 | 0.33 | |
Mean | 0.46 | 0.56 | 0.95 | 0.58 | 0.21 | 0.12 | 0.46 | 0.74 | 0.46 | 0.46 | |
Hart85 | 0.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | |
NDE | FHMM | 0.61 | 1.19 | 0.82 | 1.16 | 1.13 | 1.56 | 0.87 | 0.57 | 1.06 | 1.08 |
CO | 0.86 | 1.22 | 0.64 | 0.95 | 1.29 | 1.35 | 1.01 | 0.91 | 6.50 | 4.62 | |
Mean | 0.85 | 0.94 | 0.59 | 0.73 | 1.13 | 0.98 | 0.84 | 0.57 | 0.81 | 0.83 | |
Hart85 | 0.59 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 |
Metric | Algorithm | EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer |
---|---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | FHMM | 910.22 | 181.69 | 20.68 | 41.34 | 247.16 | 424.07 | 611.58 | 14.48 | 24.08 | 27.05 |
CO | 591.90 | 303.03 | 16.26 | 45.97 | 215.34 | 457.24 | 402.52 | 16.07 | 142.39 | 111.57 | |
Mean | 910.21 | 217.59 | 20.89 | 41.34 | 250.08 | 398.60 | 496.99 | 15.89 | 31.91 | 26.84 | |
Hart85 | 423.29 | 184.94 | 33.72 | 39.60 | 83.13 | 174.74 | 426.21 | 23.88 | 26.61 | 24.34 | |
RMSE (W) | FHMM | 935.23 | 442.50 | 20.83 | 41.43 | 406.93 | 1050.19 | 852.44 | 21.58 | 43.57 | 36.06 |
CO | 995.55 | 558.85 | 21.58 | 55.38 | 333.84 | 881.98 | 649.39 | 22.79 | 286.75 | 198.89 | |
Mean | 935.22 | 416.91 | 21.06 | 41.42 | 259.79 | 649.81 | 541.39 | 16.38 | 36.66 | 35.86 | |
Hart85 | 641.18 | 445.66 | 35.46 | 56.46 | 229.72 | 666.32 | 634.90 | 28.94 | 45.08 | 43.28 | |
F1 | FHMM | 0.46 | 0.01 | 0.95 | 0.58 | 0.35 | 0.00 | 0.14 | 0.55 | 0.40 | 0.46 |
CO | 0.47 | 0.36 | 0.81 | 0.49 | 0.24 | 0.17 | 0.41 | 0.67 | 0.34 | 0.39 | |
Mean | 0.46 | 0.56 | 0.95 | 0.58 | 0.21 | 0.12 | 0.46 | 0.74 | 0.46 | 0.46 | |
Hart85 | 0.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | |
NDE | FHMM | 0.85 | 0.99 | 0.59 | 0.73 | 1.77 | 1.58 | 1.32 | 0.75 | 0.97 | 0.83 |
CO | 0.91 | 1.25 | 0.61 | 0.98 | 1.45 | 1.32 | 1.00 | 0.79 | 6.36 | 4.60 | |
Mean | 0.85 | 0.94 | 0.59 | 0.73 | 1.13 | 0.98 | 0.84 | 0.57 | 0.81 | 0.83 | |
Hart85 | 0.59 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 |
Metric | Algorithm | EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer |
---|---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | FHMM | 602.10 | 258.83 | 16.24 | 48.84 | 269.14 | 333.10 | 542.60 | 15.87 | 120.90 | 24.05 |
CO | 506.12 | 268.69 | 22.62 | 45.12 | 217.97 | 414.86 | 408.68 | 14.90 | 156.64 | 101.75 | |
Mean | 910.21 | 217.59 | 20.89 | 41.34 | 250.08 | 398.60 | 496.99 | 15.89 | 31.91 | 26.84 | |
Hart85 | 423.29 | 184.94 | 33.72 | 39.60 | 83.13 | 174.74 | 426.21 | 23.88 | 26.61 | 24.34 | |
RMSE (W) | FHMM | 1099.57 | 469.57 | 23.35 | 62.88 | 424.46 | 929.29 | 802.23 | 16.38 | 219.35 | 43.54 |
CO | 905.62 | 522.58 | 26.65 | 56.44 | 330.19 | 837.05 | 630.21 | 21.65 | 303.74 | 195.80 | |
Mean | 935.22 | 416.91 | 21.06 | 41.42 | 259.79 | 649.81 | 541.39 | 16.38 | 36.66 | 35.86 | |
Hart85 | 641.18 | 445.66 | 35.46 | 56.46 | 229.72 | 666.32 | 634.90 | 28.94 | 45.08 | 43.28 | |
F1 | FHMM | 0.24 | 0.30 | 0.70 | 0.33 | 0.35 | 0.39 | 0.21 | 0.74 | 0.46 | 0.56 |
CO | 0.56 | 0.44 | 0.76 | 0.47 | 0.23 | 0.22 | 0.48 | 0.70 | 0.34 | 0.39 | |
Mean | 0.46 | 0.56 | 0.95 | 0.58 | 0.21 | 0.12 | 0.46 | 0.74 | 0.46 | 0.46 | |
Hart85 | 0.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | |
NDE | FHMM | 1.00 | 1.05 | 0.66 | 1.11 | 1.85 | 1.40 | 1.24 | 0.57 | 4.87 | 1.01 |
CO | 0.83 | 1.17 | 0.75 | 1.00 | 1.44 | 1.26 | 0.97 | 0.75 | 6.74 | 4.52 | |
Mean | 0.85 | 0.94 | 0.59 | 0.73 | 1.13 | 0.98 | 0.84 | 0.57 | 0.81 | 0.83 | |
Hart85 | 0.59 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 |
Metric | Algorithm | EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer |
---|---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | FHMM | 568.62 | 418.62 | 20.72 | 42.27 | 152.89 | 466.38 | 488.13 | 16.94 | 31.78 | 27.09 |
CO | 525.44 | 279.55 | 22.44 | 38.35 | 221.46 | 454.92 | 382.14 | 16.60 | 173.32 | 120.58 | |
Mean | 910.21 | 217.59 | 20.89 | 41.34 | 250.08 | 398.60 | 496.99 | 15.89 | 31.91 | 26.84 | |
Hart85 | 423.29 | 184.94 | 33.72 | 39.60 | 83.13 | 174.74 | 426.21 | 23.88 | 26.61 | 24.34 | |
RMSE (W) | FHMM | 1069.97 | 610.80 | 26.60 | 58.66 | 319.24 | 1101.25 | 529.02 | 23.39 | 36.65 | 36.05 |
CO | 917.93 | 539.86 | 26.58 | 53.29 | 346.34 | 903.06 | 619.78 | 23.16 | 328.51 | 214.68 | |
Mean | 935.22 | 416.91 | 21.06 | 41.42 | 259.79 | 649.81 | 541.39 | 16.38 | 36.66 | 35.86 | |
Hart85 | 641.18 | 445.66 | 35.46 | 56.46 | 229.72 | 666.32 | 634.90 | 28.94 | 45.08 | 43.28 | |
F1 | FHMM | 0.41 | 0.38 | 0.54 | 0.28 | 0.14 | 0.00 | 0.46 | 0.45 | 0.45 | 0.46 |
CO | 0.56 | 0.43 | 0.73 | 0.51 | 0.22 | 0.18 | 0.50 | 0.65 | 0.34 | 0.32 | |
Mean | 0.46 | 0.56 | 0.95 | 0.58 | 0.21 | 0.12 | 0.46 | 0.74 | 0.45 | 0.46 | |
Hart85 | 0.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | |
NDE | FHMM | 0.98 | 1.37 | 0.75 | 1.04 | 1.39 | 1.65 | 0.82 | 0.81 | 0.81 | 0.83 |
CO | 0.84 | 1.21 | 0.75 | 0.94 | 1.51 | 1.36 | 0.96 | 0.80 | 7.29 | 4.96 | |
Mean | 0.85 | 0.94 | 0.59 | 0.73 | 1.13 | 0.98 | 0.84 | 0.57 | 0.81 | 0.83 | |
Hart85 | 0.59 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 |
EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer | |
---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | 480.54 | 108.51 | 19.61 | 41.87 | 217.37 | 280.54 | 320.89 | 14.59 | 30.19 | 27.55 |
RMSE (W) | 667.64 | 218.20 | 20.54 | 42.10 | 270.47 | 615.92 | 426.41 | 15.74 | 35.61 | 36.18 |
F1-SCORE | 0.54 | 0.60 | 0.89 | 0.58 | 0.22 | 0.15 | 0.57 | 0.74 | 0.47 | 0.46 |
NDE | 0.61 | 0.49 | 0.58 | 0.75 | 1.18 | 0.92 | 0.66 | 0.54 | 0.79 | 0.84 |
EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer | |
---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | 174.44 | 97.59 | 19.98 | 41.78 | 107.12 | 318.48 | 391.91 | 13.28 | 30.66 | 14.93 |
RMSE (W) | 322.96 | 202.92 | 20.78 | 42.00 | 155.26 | 597.30 | 483.58 | 15.63 | 35.79 | 29.69 |
F1-SCORE | 0.54 | 0.78 | 0.87 | 0.58 | 0.21 | 0.20 | 0.46 | 0.75 | 0.45 | 0.52 |
NDE | 0.29 | 0.46 | 0.59 | 0.74 | 0.68 | 0.90 | 0.75 | 0.54 | 0.79 | 0.69 |
EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer | |
---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | 285.62 | 55.76 | 22.57 | 28.89 | 87.95 | 305.07 | 273.68 | 14.45 | 29.69 | 12.61 |
RMSE (W) | 479.89 | 156.12 | 23.25 | 39.02 | 147.50 | 610.65 | 359.92 | 18.42 | 35.05 | 27.94 |
F1-SCORE | 0.57 | 0.85 | 0.80 | 0.66 | 0.31 | 0.16 | 0.54 | 0.69 | 0.45 | 0.52 |
NDE | 0.44 | 0.35 | 0.66 | 0.69 | 0.64 | 0.92 | 0.56 | 0.64 | 0.78 | 0.65 |
EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer | |
---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | 389.74 | 51.14 | 20.53 | 34.26 | 102.06 | 331.77 | 226.71 | 13.81 | 29.21 | 14.64 |
RMSE (W) | 547.76 | 123.43 | 20.96 | 38.82 | 153.72 | 618.95 | 302.40 | 17.81 | 34.35 | 29.54 |
F1-SCORE | 0.49 | 0.80 | 0.89 | 0.58 | 0.23 | 0.12 | 0.50 | 0.69 | 0.45 | 0.51 |
NDE | 0.50 | 0.28 | 0.59 | 0.69 | 0.67 | 0.93 | 0.47 | 0.62 | 0.76 | 0.68 |
EF 1 | Mw 2 | TV | IL 3 | VC 4 | ESH 5 | ESHw 6 | Fan | Fridge | Freezer | |
---|---|---|---|---|---|---|---|---|---|---|
MAE (W) | 495.63 | 106.98 | 22.27 | 39.01 | 124.24 | 320.05 | 324.59 | 16.34 | 28.72 | 22.68 |
RMSE (W) | 682.75 | 242.33 | 22.60 | 40.19 | 179.78 | 595.84 | 467.98 | 16.71 | 36.65 | 36.73 |
F1-SCORE | 0.46 | 0.52 | 0.95 | 0.58 | 0.21 | 0.17 | 0.46 | 0.74 | 0.45 | 0.46 |
NDE | 0.62 | 0.54 | 0.64 | 0.71 | 0.78 | 0.89 | 0.72 | 0.58 | 0.81 | 0.85 |
Algorithm | Configuration | Time (s) |
---|---|---|
CO | Without harmonics | 2.61 |
With harmonics | 3.28 | |
Graph (without harmonics) | 4.42 | |
Graph (with harmonics) | 2.39 | |
10 W filter without harmonics | 2.57 | |
100 W filter without harmonics | N/A | |
10 W filter with harmonics | 3.31 | |
100 W filter with harmonics | 3.11 | |
MEAN | Without harmonics | 1.31 |
Without harmonics + 10 W filter | 0.89 | |
Without harmonics + 100 W filter | 0.93 | |
With harmonics | 1.22 | |
Mean graphic | 0.91 | |
HART85 | Without harmonics | 8.54 |
With harmonics | 8.67 | |
FHMM | Without harmonics | 66.31 |
With harmonics | 61.76 | |
Graphic | 25.67 | |
DAE | With harmonics (window size 99) | 555.63 |
RNN | With harmonics | 11,892.43 |
Seq2Point | With harmonics | 2012.42 |
Seq2Seq | With harmonics | 857.34 |
WindowGRU | With harmonics | 16,283.86 |
References
- Eurosatat Energy Consumption in Househols. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_consumption_in_households (accessed on 10 May 2025).
- Liu, H. Non-Intrusive Load Monitoring, 1st ed.; Science Press Beijing: Beijing, China, 2020; Volume 1, ISBN 978-9811518591. [Google Scholar]
- Hart, G.W. Nonintrusive Appliance Load Monitoring. Proc. IEEE 1992, 80, 1870–1891. [Google Scholar] [CrossRef]
- Lakshmi Ravi, D. Non-Intrusive Load Monitoring (NILM): A Comprehensive Review. Int. J. Innov. Res. Technol. 2024, 11, 853–858. [Google Scholar]
- Souza, J. Non-Intrusive Load Monitoring (NILM): An Introduction and Practical Example. Available online: https://www.linkedin.com/pulse/non-intrusive-load-monitoring-nilm-introduction-practical-souza-rpy4f/ (accessed on 11 March 2025).
- Kim, H.; Lim, S. Temporal Patternization of Power Signatures for Appliance Classification in Nilm. Energies 2021, 14, 2931. [Google Scholar] [CrossRef]
- Sykiotis, S.; Kaselimi, M.; Doulamis, A.; Doulamis, N. Electricity: An Efficient Transformer for Non-Intrusive Load Monitoring. Sensors 2022, 22, 2926. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Dong, K.; Zhao, J. DiffNILM: A Novel Framework for Non-Intrusive Load Monitoring Based on the Conditional Diffusion Model. Sensors 2023, 23, 3540. [Google Scholar] [CrossRef] [PubMed]
- Batra, N.; Parson, O.; Berges, M.; Singh, A.; Rogers, A. A Comparison of Non-Intrusive Load Monitoring Methods for Commercial and Residential Buildings. arXiv 2014, arXiv:1408.6595. [Google Scholar]
- Makonin, S.; Popowich, F. Nonintrusive Load Monitoring (NILM) Performance Evaluation. Energy Effic. 2015, 8, 809–814. [Google Scholar] [CrossRef]
- Viciana, E.; Arrabal-Campos, F.M.; Alcayde, A.; Baños, R.; Montoya, F.G. All-in-One Three-Phase Smart Meter and Power Quality Analyzer with Extended IoT Capabilities. Measurement 2023, 206, 112309. [Google Scholar] [CrossRef]
- Kolter, J.Z.; Johnson, M.J. REDD: A Public Data Set for Energy Disaggregation Research. In Proceedings of the 1st KDD Workshop on Data Mining Applications in Sustainability, San Diego, CA, USA, 21 August 2011; Association for Computing Machinery: New York, NY, USA, 2021. [Google Scholar]
- Makonin, S.; Popowich, F.; Bartram, L.; Gill, B.; Bajic, I.V. AMPds: A Public Dataset for Load Disaggregation and Eco-Feedback Research. In Proceedings of the 2013 IEEE Electrical Power & Energy Conference, Halifax, NS, Canada, 21–23 August 2013; 2013; pp. 1–6. [Google Scholar]
- Kelly, J.; Knottenbelt, W. The UK-DALE Dataset, Domestic Appliance-Level Electricity Demand and Whole-House Demand from Five UK Homes. Sci. Data 2015, 2, 150007. [Google Scholar] [CrossRef] [PubMed]
- Lucas, A.; Jansen, L.; Andreadou, N.; Kotsakis, E.; Masera, M. Load Flexibility Forecast for DR Using Non-Intrusive Load Monitoring in the Residential Sector. Energies 2019, 12, 2725. [Google Scholar] [CrossRef]
- Beckel, C.; Kleiminger, W.; Cicchetti, R.; Staake, T.; Santini, S. The ECO Data Set and the Performance of Non-Intrusive Load Monitoring Algorithms. In Proceedings of the BuildSys 2014—1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, Memphis, TN, USA, 3 November 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 80–89. [Google Scholar]
- Monacchi, A.; Egarter, D.; Elmenreich, W.; D’Alessandro, S.; Tonello, A.M. GREEND: An Energy Consumption Dataset of Households in Italy and Austria. In Proceedings of the 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), Venice, Italy, 3–6 November 2014; IEEE: New York, NY, USA, 2015. [Google Scholar]
- Rodriguez-Navarro, C. DSUALM10H. Available online: https://zenodo.org/records/13739915 (accessed on 26 March 2025).
- Rodriguez-Navarro, C.; Portillo, F.; Castro-Santos, L.; Filgueira-Vizoso, A.; Montoya, F.G.; Alcayde, A. Optimising Energy Efficiency Enhancing NILM through High—Resolution Data Analytics. REPQJ 2024, 22, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.; Batra, N.; Parson, O.; Dutta, H.; Knottenbelt, W.; Rogers, A.; Sigh, A.; Srivastava, M. NILMTK v0.2: A Non-Intrusive Load Monitoring Toolkit for Large Scale Data Sets. In Proceedings of the BuildSys 2014—1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, Memphis, TN, USA, 3 November 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 182–183. [Google Scholar]
- Kukunuri, R.; Batra, N.; Pandey, A.; Malakar, R.; Kumar, R.; Krystalakos, O.; Zhong, M.; Meira, P.; Parson, O. NILMTK-Contrib: Towards Reproducible State-of-the-Art Energy Disaggregation. In BuildSys ’19: Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, New York, NY, USA, 13–14 November 2019; Association for Computing Machinery: New York, NY, USA, 2019. [Google Scholar]
- Rodriguez-Navarro, C. Performance Analysis of Nine Disaggregation Algorithms on the DSUALM10 Dataset: A Notebook Study. Available online: https://zenodo.org/records/15575404 (accessed on 11 May 2025).
- Rodríguez-Navarro, C.; Portillo, F.; Martínez, F.; Manzano-Agugliaro, F.; Alcayde, A. Development and Application of an Open Power Meter Suitable for NILM. Inventions 2023, 9, 2. [Google Scholar] [CrossRef]
- Kelly, J.; Knottenbelt, W. Neural NILM: Deep Neural Networks Applied to Energy Disaggregation. In BuildSys 2015—Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built, Seoul, Republic of Korea, 4–5 November 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 55–64. [Google Scholar]
- Yu, K.; Vasios, N.; Perol, T. Energy Disaggregation from Non-Intrusive Load Monitoring Combinatorial Optimization, Factorial Hidden Markov Model, Convolutional Neural Network; Harvard John A. Paulson School of Engineering and Applied Sciences: Boston, MA, USA, 2016; AM 207. [Google Scholar]
- Bonfigli, R.; Principi, E.; Fagiani, M.; Severini, M.; Squartini, S.; Piazza, F. Non-Intrusive Load Monitoring by Using Active and Reactive Power in Additive Factorial Hidden Markov Models. Appl. Energy 2017, 208, 1590–1607. [Google Scholar] [CrossRef]
- Ghahramani, Z.; Jordan, M.I. Factorial Hidden Markov Models. Mach. Learn. 1997, 29, 245–273. [Google Scholar] [CrossRef]
- Adewole, K.S.; Torra, V. Energy Disaggregation Risk Resilience through Microaggregation and Discrete Fourier Transform. Inf. Sci. 2024, 662, 120211. [Google Scholar] [CrossRef]
- Shastri, H.; Batra, N. Neural Network Approaches and Dataset Parser for NILM Toolkit. In Proceedings of the BuildSys 2021—2021 ACM International Conference on Systems for Energy-Efficient Built Environments, Coimbra, Portugal, 17–18 November 2021; Association for Computing Machinery: New York, NY, USA, 2021. [Google Scholar]
Sampling Rate | Algorithm | MAE (W) | RMSE (W) | F1-SCORE | NDE |
---|---|---|---|---|---|
250 ms | Mean | 262 | 298 | 0.52 | 0.82 |
CO | 220 | 390 | 0.44 | 1.09 | |
FHMM | 200 | 360 | 0.38 | 0.98 | |
Hart85 | 290 | 320 | 0.12 | 1 | |
500 ms | Mean | 270 | 310 | 0.51 | 0.83 |
CO | 230 | 410 | 0.43 | 1.11 | |
FHMM | 210 | 370 | 0.39 | 0.99 | |
Hart85 | 295 | 330 | 0.12 | 1 | |
1 s | Mean | 280 | 323 | 0.51 | 0.85 |
CO | 245 | 480 | 0.43 | 1.17 | |
FHMM | 218 | 373 | 0.4 | 1 | |
Hart85 | 303 | 340 | 0.11 | 1 | |
15 s | Mean | 262 | 307 | 0.48 | 0.87 |
CO | 226 | 387 | 0.41 | 1.19 | |
FHMM | 271 | 325 | 0.12 | 1.01 | |
Hart85 | 210 | 340 | 0.36 | 1.02 | |
30 s | Mean | 277 | 328 | 0.48 | 0.88 |
CO | 239 | 420 | 0.41 | 1.21 | |
FHMM | 295 | 353 | 0.13 | 1.02 | |
Hart85 | 225 | 357 | 0.32 | 1.04 | |
60 s | Mean | 305 | 355 | 0.46 | 0.83 |
CO | 241 | 393 | 0.39 | 1.16 | |
FHMM | 319 | 388 | 0.11 | 1.04 | |
Hart85 | 257 | 378 | 0.3 | 1.05 | |
90 s | Mean | 323 | 374 | 0.44 | 0.86 |
CO | 253 | 410 | 0.37 | 1.18 | |
FHMM | 337 | 406 | 0.1 | 1.06 | |
Hart85 | 271 | 397 | 0.28 | 1.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Navarro, C.; Portillo, F.; Robalo, I.; Alcayde, A. Evaluation of Traditional and Data-Driven Algorithms for Energy Disaggregation Under Sampling and Filtering Conditions. Inventions 2025, 10, 43. https://doi.org/10.3390/inventions10030043
Rodriguez-Navarro C, Portillo F, Robalo I, Alcayde A. Evaluation of Traditional and Data-Driven Algorithms for Energy Disaggregation Under Sampling and Filtering Conditions. Inventions. 2025; 10(3):43. https://doi.org/10.3390/inventions10030043
Chicago/Turabian StyleRodriguez-Navarro, Carlos, Francisco Portillo, Isabel Robalo, and Alfredo Alcayde. 2025. "Evaluation of Traditional and Data-Driven Algorithms for Energy Disaggregation Under Sampling and Filtering Conditions" Inventions 10, no. 3: 43. https://doi.org/10.3390/inventions10030043
APA StyleRodriguez-Navarro, C., Portillo, F., Robalo, I., & Alcayde, A. (2025). Evaluation of Traditional and Data-Driven Algorithms for Energy Disaggregation Under Sampling and Filtering Conditions. Inventions, 10(3), 43. https://doi.org/10.3390/inventions10030043