Performance Study of Virtual Frisch Grid CdZnTeSe Detectors
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schlesinger, T.E.; Toney, J.E.; Yoon, H.; Lee, E.Y.; Brunett, B.A.; Franks, L.; James, R.B. Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater. Sci. Eng. R 2001, 32, 103–189. [Google Scholar] [CrossRef]
- Yang, G.; James, R.B. CdTe and Related Compounds; Physics, Defects, Hetero- and Nano-Structures, Crystal Growth, Surfaces and Applications Part II; Triboulet, R., Siffert, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 214–238. [Google Scholar]
- Barthelmy, S.D.; Barbier, L.M.; Cummings, J.R.; Fenimore, E.E.; Gehrels, N.; Hullinger, D.; Krimm, H.A.; Markwardt, C.B.; Palmer, D.M.; Parsons, A.; et al. The burst alert telescope (BAT) on the SWIFT midex mission. Space Sci. Rev. 2005, 120, 143–164. [Google Scholar] [CrossRef]
- Krawczynski, H.S.; Stern, D.; Harrison, F.A.; Kislat, F.F.; Zajczyk, A.; Beilicke, M.; Hoormann, J.; Qingzhen, G.; Endsley, R.; Ingram, A.R.; et al. X-ray polarimetry with the Polarization Spectroscopic Telescope Array (PolSTAR). Astropart. Phys. 2016, 75, 8–28. [Google Scholar] [CrossRef]
- Slomka, P.J.; Miller, R.J.H.; Hu, L.H.; Germano, G.; Berman, D.S. Solid-State Detector SPECT Myocardial Perfusion Imaging. J. Nucl. Med. 2019, 60, 1194–1204. [Google Scholar] [CrossRef]
- Jing, W.; Chi, L. Recent advances in cardiac SPECT instrumentation and imaging methods. Phys. Med. Biol. 2019, 64, 06TR01. [Google Scholar]
- Santarelli, M.F.; Giovannetti, G.; Hartwig, V.; Celi, S.; Positano, V.; Landini, L. The Core of Medical Imaging: State of the Art and Perspectives on the Detectors. Electronics 2021, 10, 1642. [Google Scholar] [CrossRef]
- Carini, G.A.; Bolotnikov, A.E.; Camarda, G.S.; James, R.B. High-resolution X-ray mapping of CdZnTe detectors. Nucl. Instrum. Methods Phys. Res. A 2007, 579, 120–124. [Google Scholar] [CrossRef]
- Amman, M.; Lee, J.S.; Luke, P.N. Electron trapping nonuniformity in high-pressure-Bridgman-grown CdZnTe. J. Appl. Phys. 2002, 92, 3198–3206. [Google Scholar] [CrossRef]
- Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Yang, G.; Hossain, A.; Kim, K.; James, R.B. Characterization and evaluation of extended defects in CZT crystals for gamma-ray detectors. J. Cryst. Growth 2013, 379, 46–56. [Google Scholar] [CrossRef]
- Awadalla, S.A.; Mackenzie, J.; Chen, H.; Redden, B.; Bindley, G.; Duff, M.C.; Burger, A.; Groza, M.; Buliga, V.; Bradley, J.P.; et al. Characterization of detector-grade CdZnTe crystals grown by traveling heater method (THM). J. Cryst. Growth 2010, 312, 507–513. [Google Scholar] [CrossRef]
- Zhang, N.; Yeckel, A.; Burger, A.; Cui, Y.; Lynn, K.G.; Derby, J.J. Anomalous segregation during electrodynamic gradient freeze growth of cadmium zinc telluride. J. Cryst. Growth 2011, 325, 10–19. [Google Scholar] [CrossRef]
- Hitomi, K.; Tada, T.; Onodera, T.; Kim, S.Y.; Xu, Y.; Shoji, T.; Ishii, K. TlBr Capacitive Frisch Grid Detectors. IEEE Trans. Nucl. Sci. 2013, 60, 1156–1161. [Google Scholar] [CrossRef]
- Datta, A.; Becla, P.; Motakef, S. Novel Electrodes and Engineered Interfaces for Halide-Semiconductor Radiation Detectors. Sci. Rep. 2019, 9, 9933. [Google Scholar] [CrossRef] [PubMed]
- Takagi, K.; Toyoda, K.; Kase, H.; Takagi, T.; Tabata, K.; Terao, T.; Morii, H.; Koike, A.; Aoki, T.; Nogami, M.; et al. Bias Polarity Switching-Type TlBr X-Ray Imager. IEEE Trans. Nucl. Sci. 2021, 68, 2435–2439. [Google Scholar] [CrossRef]
- Datta, A.; Fiala, J.; Becla, P.; Motakef, S. Stable room-temperature thallium bromide semiconductor radiation detectors. Appl. Phys. Lett. Mater. 2017, 5, 106109. [Google Scholar] [CrossRef]
- He, Y.; Matei, L.; Jung, H.J.; McCall, K.M.; Chen, M.; Stoumpos, C.C.; Liu, Z.; Peters, J.A.; Chung, D.Y.; Wessels, B.W.; et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Comm. 2018, 9, 1609. [Google Scholar] [CrossRef]
- He, Y.; Petryk, M.; Liu, Z.; Chica, D.G.; Hadar, I.; Leak, C.; Ke, W.; Spanopoulos, I.; Lin, W.; Chung, D.Y.; et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nat. Photonics 2021, 15, 36–42. [Google Scholar] [CrossRef]
- Zhang, B.B.; Wang, F.; Zhang, H.; Xio, B.; Sun, Q.; Guo, J.; Hafsia, A.B.; Shao, A.; Xu, Y.; Zhou, J. Defect proliferation in CsPbBr3 crystal induced by ion migration. Appl. Phys. Lett. 2020, 116, 063505. [Google Scholar] [CrossRef]
- Rudolph, P. Fundamental studies on Bridgman growth of CdTe. Prog. Crystal Growth Charact. 1994, 29, 275–381. [Google Scholar] [CrossRef]
- Johnson, C.J. Recent progress in lattice matched substrates for HgCdTe epitaxy. SPIE Proc. 1989, 56, 1106. [Google Scholar]
- Brill, G.; Chen, Y.; Amritraj, P.M.; Sarney, W.; Chandlerhorowitz, D.; Dhar, N.K. Molecular beam epitaxial growth and characterization of Cd-based II–VI wide-bandgap compounds on Si substrates. J. Electron. Mat. 2005, 34, 655–661. [Google Scholar] [CrossRef]
- Tanaka, A.; Masa, Y.; Seto, S.; Kawasaki, T. Zinc and selenium co-doped CdTe substrates lattice matched to HgCdTe. J. Cryst. Growth 1989, 94, 166–170. [Google Scholar] [CrossRef]
- Chang, C.Y.; Tseng, B.H. Crystal growth of CdTe alloyed with Zn, Se and S. Mater. Sci. Eng. B 1997, 49, 1–4. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; Gul, R.; Hossain, A.; Yang, G.; Zazvorka, J.; Dedic, V.; Franc, J.; James, R.B. Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications. Sci. Rep. 2019, 9, 1620. [Google Scholar] [CrossRef] [PubMed]
- Kleppinger, J.W.; Chaudhuri, S.K.; Roy, U.N.; James, R.B.; Mandal, K.C. Growth of Cd0.9Zn0.1Te1–ySey Single Crystals for Room-Temperature Gamma Ray Detection. IEEE Trans. Nucl. Sci. 2021, 68, 2429–2434. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; Gul, R.; Yang, G.; Zazvorka, J.; Dedic, V.; Franc, J.; James, R.B. Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects. Sci. Rep. 2019, 9, 7303. [Google Scholar] [CrossRef]
- Herraiz, L.M.; Brana, A.F.; Plaza, J.L. Vertical Gradient Freeze Growth of two inches Cd1−xZnxTe1−ySey ingots with different Se content. J. Cryst. Growth 2021, 573, 126219. [Google Scholar]
- Hwang, S.; Yu, H.; Bolotnikov, A.E.; James, R.B.; Kim, K. Anomalous Te inclusion size and distribution in CdZnTeSe. IEEE Trans. Nucl. Sci. 2019, 66, 2329–2332. [Google Scholar] [CrossRef]
- Gul, R.; Roy, U.N.; Camarda, G.S.; Hossain, A.; Yang, G.; Vanier, P.; Lordi, V.; Varley, J.; James, R.B. A comparison of point defects in Cd1−xZnxTe1−ySey crystals grown by Bridgman and traveling heater methods. J. Appl. Phys. 2017, 121, 125705. [Google Scholar] [CrossRef]
- Yakimov, A.; Smith, D.; Choi, J.; Araujo, S. Growth and characterization of detector-grade CdZnTeSe by horizontal Bridgman technique. Proc. SPIE 2019, 11114, 111141N. [Google Scholar]
- Franc, J.; Moravec, P.; Dedic, V.; Roy, U.; Elhadidy, H.; Minarik, P.; Sima, V. Microhardness study of Cd1−x ZnxTe1-ySey crystals for X-ray and gamma ray detectors. Mater. Today Comm. 2020, 24, 101014. [Google Scholar]
- Park, B.; Kim, Y.; Seo, J.; Byun, J.; Dedic, V.; Franc, J.; Bolotnikov, A.E.; James, R.B.; Kim, K. Bandgap engineering of Cd1− xZnxTe1− ySey (0<x<0.27, 0<y<0.026). Nucl. Instrum. Methods Phys. Res. A 2022, 1036, 166836. [Google Scholar]
- Chaudhuri, S.K.; Kleppinger, J.W.; Karadavut, O.M.; Nag, R.; Mandal, K.C. Quaternary Semiconductor Cd1− xZnxTe1−ySey for High-Resolution, Room-Temperature Gamma-Ray Detection. Crystals 2021, 11, 827. [Google Scholar] [CrossRef]
- Znamenshchykov, Y.; Pashchenko, M.; Kononov, O.; Volobuev, V.; Kurbatov, D.; Opanasyuk, A. Effect of Thermal Annealing on the Structural and Substructural Properties of Cd1−xZnxTe1-ySey Thick Polycrystalline Films. In Proceedings of the IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP), Odesa, Ukraine, 5–11 September 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Byun, J.; Seo, J.; Seo, J.; Park, B. Growth and characterization of detector-grade CdMnTeSe. Nucl. Engr. Technol. 2022, in press. [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; James, R.B. Optimization of selenium in CdZnTeSe quaternary compound for radiation detector applications. Appl. Phys. Lett. 2021, 118, 152101. [Google Scholar] [CrossRef]
- Duff, M.C.; Hunter, D.B.; Burger, A.; Groza, M.; Buliga, V.; Black, D.R. Effect of surface preparation technique on the radiation detector performance of CdZnTe. Appl. Surf. Sci. 2008, 254, 2889. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; James, R.B. Characterization of large-volume Frisch grid detector fabricated from as-grown CdZnTeSe. Appl. Phys. Lett. 2019, 115, 242102. [Google Scholar] [CrossRef]
- Jo, W.J.; Kim, H.S.; Ha, J.H.; Jeong, M. Optimization of shielding electrode lengths of virtual Frisch-grid CdZnTe radiation detector for gamma-ray detection. Curr. Appl. Phys. 2015, 15, s51–s56. [Google Scholar] [CrossRef]
- Cola, R.; Farella, I.; Auricchio, N.; Caroli, E. Investigation of the electric field distribution in x-ray detectors by Pockels effect. J. Opt. A Pure Appl. Opt. 2006, 8, S467–S472. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; Yang, G.; James, R.B. Impact of selenium addition to the cadmium-zinc-telluride matrix for producing high energy resolution X-and gamma-ray detectors. Sci. Rep. 2021, 11, 10338. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, U.N.; Camarda, G.S.; Cui, Y.; James, R.B. Performance Study of Virtual Frisch Grid CdZnTeSe Detectors. Instruments 2022, 6, 69. https://doi.org/10.3390/instruments6040069
Roy UN, Camarda GS, Cui Y, James RB. Performance Study of Virtual Frisch Grid CdZnTeSe Detectors. Instruments. 2022; 6(4):69. https://doi.org/10.3390/instruments6040069
Chicago/Turabian StyleRoy, Utpal N., Giuseppe S. Camarda, Yonggang Cui, and Ralph B. James. 2022. "Performance Study of Virtual Frisch Grid CdZnTeSe Detectors" Instruments 6, no. 4: 69. https://doi.org/10.3390/instruments6040069
APA StyleRoy, U. N., Camarda, G. S., Cui, Y., & James, R. B. (2022). Performance Study of Virtual Frisch Grid CdZnTeSe Detectors. Instruments, 6(4), 69. https://doi.org/10.3390/instruments6040069