The SiD Digital ECal Based on Monolithic Active Pixel Sensors
Abstract
:1. Introduction
2. Large-Area MAPS for Future Linear e+ e− Collider
- Power pulsing: Current drawn from the supply needs to reach the peak value in the shortest time possible to take full advantage of the power pulsing technique. This minimizes the duty cycle and thus decreases the average power consumption. However, the instantaneous current consumption of the pixel matrix can reach several Amperes over a few microseconds.
- Power distribution: Distribution of the power supply over a large area is challenging because of the non-negligible voltage drop over long metal distribution lines.
- Yield: Since the probability of fabrication defects scales with the area of the device, it is essential to develop new techniques to mitigate the effects of fabrication defects, such as shorts between supply and ground lines. A defect on one reticle-size MAPS would result in a lower number of usable dies per wafer and a defect on a wafer-scale device is almost inevitable, possibly resulting in the loss of a full wafer.
- Stitching techniques: Design of stitching MAPS introduces additional layout design rules and methodologies, with the goal to increase the fabrication yield. This additional set of rules is not traditionally encountered by ASIC designers. Exposing ASIC designers to such design rules is an essential first step towards the development of wafer-scale devices.
- Assembly and power delivery: Preliminary mechanical and assembly tests need to be conducted to evaluate sensor-power delivery techniques, while minimizing detector dead material.
3. SiD
- Impact parameter resolution:, where p is particle momentum and is the angle between the particle and the beamline.
- Momentum resolution: asymptotically at high momenta, maintaining excellent tracking efficiency and very good momentum resolution at lower momenta with an aggressive minimization of detector material budget.
- Jet energy resolution:– for light flavour jets with E ≳ 100 GeV based on a PFA; this requires good longitudinal and transverse segmentation, with a minimal Moliere radius.
- Readout: Triggerless.
- Powering: Power of major systems cycled between bunch trains to minimizing cooling requirements and level of inactive material within detector.
4. MAPS Performance for ECal
- Potential of multi-bit digital operation;
- Jet reconstruction;
- Optimization of the overall ECal design, including consideration of manufacturability, possible with robots.
5. MAPS Performance for Tracker Detectors
6. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Behnke, T.; Brau, J.E.; Philip N. Burrows, P.N.; Fuster, J.; Peskin, M.; Stanitzki, M.; Sugimoto, Y.; Yamada, S.; Yamamoto, H. The International Linear Collider Technical Design Report—Volume 4: Detectors. arXiv 2013, arXiv:1306.6329. [Google Scholar]
- Turchetta, R.; Berst, J.D.; Casadei, B.; Claus, G.; Colledani, C.; Dulinski, W.; Hu, Y.; Husson, D.; Le Normand, J.P.; Riester, J.L.; et al. A monolithic active pixel sensor for charged particle tracking and imaging using standard VLSI CMOS technology. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2001, 458, 677–689. [Google Scholar] [CrossRef]
- Deptuch, G.; Berst, J.D.; Claus, G.; Colledani, C.; Dulinski, W.; Gornoushkin, Y.; Husson, D.; Riester, J.-L.; Winter, M. Design and Testing of Monolithic Active Pixel Sensors for Charged Particle Tracking. IEEE Trans. Nucl. Sci. 2002, 49, 601–610. [Google Scholar] [CrossRef]
- Perić, I. A novel monolithic pixel detector implemented in high-voltage CMOS technology. In Proceedings of the 2007 IEEE Nuclear Science Symposium and Medical Imaging Conference, Honolulu, HI, USA, 26 October–3 November 2007; Volume 2, pp. 1033–1039. [Google Scholar] [CrossRef]
- Turchetta, R. Design and Process Development of CMOS Image Sensors with TowerJazz, Workshop on CMOS Active Pixel Sensors for Particle Tracking. 2014. Available online: https://indico.cern.ch/event/309449/contributions/1680002/attachments/591507/814229/cpix2014Turchetta.pdf (accessed on 7 September 2022).
- Deptuch, G.W.; Carini, G.; Enquist, P.; Grybos, P.; Holm, S.; Lipton, R.; Maj, P.; Patti, R.; Siddons, D.P.; Szczygiel, R.; et al. Fully 3D-integrated Pixel Detectors for X-Rays. IEEE Trans. Electron Devices 2016, 63, 205–214. [Google Scholar] [CrossRef]
- Greiner, L.; Anderssen, E.; Matis, H.S.; Ritter, H.G.; Schambach, J.; Silber, J.; Stezelberger, T.; Sun, X.; Szelezniak, M.; Thomas, J.; et al. A MAPS based vertex detector for the STAR experiment at RHIC. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2011, 650, 68–72. [Google Scholar] [CrossRef]
- Deptuch, G.; Winter, M.; Dulinski, W.; Husson, D.; Turchetta, R.; Riester, J.L. Simulation and Measurements of Charge Collection in Monolithic Active Pixel Sensors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2001, 465, 92–100. [Google Scholar] [CrossRef]
- Deveaux, M.; Amar, S.; Besson, A.; Baudot, J.; Claus, G.; Colledani, C.; Deptuch, G.; Dorokhov, A.; Dulinski, W.; Goffe, M.; et al. Charge Collection Properties of Monolithic Active Pixel Sensors (MAPS) Irradiated with Non-Ionising Radiations. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2007, 583, 134–138. [Google Scholar] [CrossRef]
- Snoeys, W.; Rinella, G.A.; Hillemanns, H.; Kugathasan, T.; Mager, M.; Musa, L.; Riedler, P.; Reidt, F.; Van Hoorne, J.; Fenigstein, A.; et al. A process modification for CMOS monolithic active pixel sensors for enhanced depletion, timing performance and radiation tolerance. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2017, 871, 90–96. [Google Scholar] [CrossRef]
- Schioppa, E.J.; Tortajada, I.A.; Berdalovic, I.; Bortoletto, D.; Cardella, R.; Dachs, F.; Dao, V.; De Acedo, L.F.S.; Freeman, P.M.; Hemperek, T.; et al. Measurement results of the MALTA monolithic pixel detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2020, 958, 162404. [Google Scholar] [CrossRef]
- Contin, G. The MAPS-based ITS Upgrade for ALICE. arXiv 2020, arXiv:2001.03042. [Google Scholar]
- Mager, M. The LS3 upgrade of the ALICE Inner Tracking System based on ultra-thin, wafer-scale, bent Monolithic Active Pixel Sensors. In Proceedings of the 15th Trento Workshop on Advanced Silicon Radiation Detectors, Vienna, Austria, 17–19 February 2020. [Google Scholar]
- Prabket, J.; Poonsawat, W.; Kobdaj, C.; Naeosuphap, S.; Yan, Y.; Jeamsaksiri, W.; Yamwong, W.; Chaowicharat, E.; Hruanun, C.; Poyai, A. Resistivity profile of epitaxial layer for the new ALICE ITS sensor. J. Instrum. 2019, 14, T05006. [Google Scholar] [CrossRef]
- Theuvissen, A. BUTTING versus STITCHING (1). Available online: https://harvestimaging.com/blog/?p=1568 (accessed on 7 September 2022).
- Theuvissen, A. BUTTING versus STITCHING (2). Available online: https://harvestimaging.com/blog/?p=1599 (accessed on 7 September 2022).
- Wunderer, C.B.; Marras, A.; Bayer, M.; Glaser, L.; Gottlicher, P.; Lange, S.; Pithan, F.; Scholz, F.; Seltmann, J.; Shevyakov, I.; et al. The PERCIVAL soft X-ray imager. J. Instrum. 2014, 9, C03056. [Google Scholar] [CrossRef]
- Contin, G. The MAPS-based vertex detector for the STAR experiment: Lessons learned and performance. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2016, 831, 7–11. [Google Scholar] [CrossRef]
- Bai, M.; Barklow, T.; Bartoldus, R.; Breidenbach, M.; Grenier, P.; Huang, Z.; Kagan, M.; Lewellen, J.; Li, Z.; Markiewicz, T.W.; et al. C3: A “Cool” Route to the Higgs Boson and Beyond. arXiv 2021, arXiv:2110.15800. [Google Scholar]
- Brau, J.; Breidenbach, M.; Dragone, A.; Fields, G.; Frey, R.; Freytag, D.; Freytag, M.; Gallagher, C.; Haller, G.; Herbst, R.; et al. KPiX—A 1024 channel readout ASIC for the ILC. In Proceedings of the 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (2012 NSS/MIC), Anaheim, CA, USA, 29 October–3 November 2012; pp. 1857–1860. [Google Scholar]
- Dragone, A.; Caragiulo, P.; Markovic, B.; Herbst, R.; Nishimura, K.; Reese, B.; Herrmann, S.; Hart, P.; Blaj, G.; Segal, J.; et al. ePix: A class of front-end ASICs for second generation LCLS integrating hybrid pixel detectors. In Proceedings of the 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), Seoul, Korea, 27 October–2 November 2013; pp. 1–5. [Google Scholar]
- Linssen, L.; Miyamoto, A.; Stanitzki, M.; Weerts, H. Physics and Detectors at CLIC: CLIC Conceptual Design Report. arXiv 2012, arXiv:1202.5940. [Google Scholar]
- Ballin, J.A.; Dauncey, P.D.; Magnan, A.M.; Noy, M.; Mikami, Y.; Miller, O.; Rajovic, V.; Watson, N.K.; Wilson, J.A.; Crooks, J.P.; et al. A Digital ECAL based on MAPS. arXiv 2009, arXiv:0901.4457. [Google Scholar]
- Stanitzki, M.; SPiDeR Collaboration. Advanced monolithic active pixel sensors for tracking, vertexing and calorimetry with full CMOS capability. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2011, 650, 178–183. [Google Scholar] [CrossRef]
- Dauncey, P.; SPiDeR Collaboration. Performance of CMOS sensors for a digital electromagnetic calorimeter. PoS 2010, 502, ICHEP2010. [Google Scholar]
- De Haas, A.P.; Nooren, G.; Peitzmann, T.; Reicher, M.; Rocco, E.; Rohrich, D.; Ullaland, K.; van den Brink, A.; van Leeuwen, M.; Wang, H.; et al. The FoCal prototype—An extremely fine-grained electromagnetic calorimeter using CMOS pixel sensors. J. Instrum. 2018, 13, P01014. [Google Scholar] [CrossRef]
- Brau, J.; Breidenbach, M.; Freytag, D.R.; Kleinwort, C.; Kraemer, U.; Reese, B.A.; Roelofs, S.; Stanitzki, M.; Steinhebel, A.; Tsionou, D.; et al. Lycoris—A large-area, high resolution beam telescope. J. Instrum. 2021, 16, P10023. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Min. Threshold | 140 e− |
Spatial resolution | 7 μm |
Pixel size | 25 × 100 μm2 |
Chip size | 10 × 10 cm2 |
Chip thickness | 300 μm |
Timing resolution (pixel) | ∼ns |
Total Ionizing Dose | 100 kRads |
Hit density/train | 1000 hits/cm2 |
Hits spatial distribution | Clusters |
Power density | 20 mW/cm2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brau, J.E.; Breidenbach, M.; Habib, A.; Rota, L.; Vernieri, C. The SiD Digital ECal Based on Monolithic Active Pixel Sensors. Instruments 2022, 6, 51. https://doi.org/10.3390/instruments6040051
Brau JE, Breidenbach M, Habib A, Rota L, Vernieri C. The SiD Digital ECal Based on Monolithic Active Pixel Sensors. Instruments. 2022; 6(4):51. https://doi.org/10.3390/instruments6040051
Chicago/Turabian StyleBrau, James E., Martin Breidenbach, Alexandre Habib, Lorenzo Rota, and Caterina Vernieri. 2022. "The SiD Digital ECal Based on Monolithic Active Pixel Sensors" Instruments 6, no. 4: 51. https://doi.org/10.3390/instruments6040051
APA StyleBrau, J. E., Breidenbach, M., Habib, A., Rota, L., & Vernieri, C. (2022). The SiD Digital ECal Based on Monolithic Active Pixel Sensors. Instruments, 6(4), 51. https://doi.org/10.3390/instruments6040051