Detection and Imaging with Leak Microstructures
Abstract
:1. Introduction
- The lack of insulating material between the cathode and the needle tip, which represent the sensitive part of the anode where the avalanche develops, avoids the charging-up phenomena that can alter the electric field and thus the response of the detector: the LM detector shows a very stable and repetitive behavior;
- The high gas gain [4]: higher than 106 in detecting single electrons emitted by the heated filament and more than 6 × 105 in detecting X photons from a 5.9 keV 55Fe source working in a proportional region at 760 Torr.
2. Imaging
3. Alpha Particles Detection
4. Preliminary Results on Single-Electron Detection at Low-Pressure
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lombardi, M.; Prete, G.; Lombardi, A. Large-Scale Collective Motion of Atomic Nuclei. In Proceedings of the International Symposium, Brolo, Messina, 15–19 October 1996; World Scientific: Singapore, 1996; pp. 459–465. [Google Scholar]
- Lombardi, M.; Lombardi, F.S. The leak microstructure, preliminary results. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1997, 392, 23–27. [Google Scholar] [CrossRef]
- Lombardi, M.; Lombardi, F. Preliminary results from a new microstructure for gaseous detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1997, 388, 186–192. [Google Scholar] [CrossRef]
- Lombardi, M.; Lombardi, F. The leak microstructure: A novel element for sensitive position two-dimensional readout gaseous detectors. Preliminary results. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1998, 409, 65–69. [Google Scholar] [CrossRef]
- Lombardi, M.; Guoxiang, H.H.-J.; Lombardi, F. About the leak microstructures. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 461, 91–95. [Google Scholar] [CrossRef]
- Lombardi, M.; Baiocchi, C.; Battistella, A.; Balbinot, G.; Guoxiang, H.H.-J.; Lombardi, F. The leak microstructure. Pramana 2001, 57, 115–124. [Google Scholar] [CrossRef]
- Lombardi, M.; Huo, H.; Lombardi, F. Performances of the leak microstructures. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2002, 477, 64–71. [Google Scholar] [CrossRef]
- Baiocchi, C.; Balbinot, G.; Battistella, A.; Galeazzi, G.; Lombardi, F.; Lombardi, M.; Prete, G.; Simon, A. Imaging with the leak microstructures: Preliminary results. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 518, 448–451. [Google Scholar] [CrossRef]
- Comby, G.; Mangeot, P.; Tichit, J.; Lignieres, H.d.; Chalot, J.; Monfray, P. A multi-needle detector with cathodic focusing. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1980, 174, 77–92. [Google Scholar]
- Comby, G.; Mangeot, P.; Augueres, J.; Claudet, S.; Chalot, J.; Tichit, J.; Lignieres, H.d.; Zadra, A. The detection of Cherenkov radiation using needle chambers with cathodic focusing. Nucl. Instrum. Methods 1980, 174, 93–107. [Google Scholar] [CrossRef]
- Comby, G.; Mangeot, P.; Prugne, P.; Chalot, J.; Coulareau, E.; Quidort, J.; Beauval, J.; Tichit, J. Multi-needle detector with cathode focusing. Nucl. Instrum. Methods 1980, 176, 313–321. [Google Scholar] [CrossRef]
- Bateman, J.E. The pin detector—A simple, robust, cheap and effective nuclear radiation detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1985, 238, 524–532. [Google Scholar] [CrossRef]
- Bateman, J.E. The imaging pin detector: A simple and effective new imaging device for soft X-rays and soft beta emissions. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1985, 240, 177–187. [Google Scholar] [CrossRef]
- De Nardo, L.; Balbinot, G.; Colautti, P.; Simon, A.; Conte, V.; Lombardi, M. The leak microstructure detector as trigger and particle rejector of the STARTRACK experiment. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2006, 562, 127–135. [Google Scholar] [CrossRef]
- Ferretti, A.; De Nardo, L.; Lombardi, M. Preliminary study of a leak microstructure detector as a new single-electron counter for STARTRACK experiment. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 599, 215–220. [Google Scholar] [CrossRef]
- Clemens, M.; Drobny, S.; Kruger, H.; Pinder, P.; Podebrad, O.; Schillinger, B.; Trapp, B.; Weiland, T.; Wilke, M.; Bartsch, M.; et al. The electromagnetic simulation software package MAFIA. In Proceedings of the 1999 International Conference on Computational Electromagnetics and Its Applications, Beijing, China, 4 November 1999. [Google Scholar]
- Cookson, A.; Lewis, T. Variations in the Townsend first ionization coefficient for gases. Brit. J. Appl. Phys. 1966, 17, 1473. [Google Scholar] [CrossRef]
- Bellazzini, R.; Spezziga, M.A. Electric field, avalanche growth and signal development in micro-strip gas chambers and micro-gap chambers. Riv. Nuovo Cim. 1994, 17, 12. [Google Scholar] [CrossRef]
- Seguinot, J.; Ypsilantis, T. A historical survey of ring imaging Cherenkov counters. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1994, 343, 1–29. [Google Scholar] [CrossRef]
- Breskin, A.; Chechik, R.; Akkerman, A.; Gibrekhterman, A.; Elkind, V.; Frumkin, I.; Notea, A. Recent developments in secondary emission gaseous X-ray imaging detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1994, 348, 207–215. [Google Scholar] [CrossRef]
- Sauli, F. Principles of Operation of Multiwire Proportional and Drift Chambers; Principles of operation MWPC (1977), CERN 77-09; CERN: Geneva, Switzerland, 1977. [Google Scholar]
- Sauli, F. Micro-Pattern Gaseous Detectors: Principles of Operation and Applications; World Scientific: Singapore, 2020. [Google Scholar]
- Frumkin, I.; Breskin, A.; Chechik, R.; Elkind, V.; Notea, A. Properties of CsI-based gaseous secondary emission X-ray imaging detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1993, 329, 337–347. [Google Scholar] [CrossRef]
- Randhawa, J.S.; Cortesi, M.; Mittig, W.; Wierzbicki, T.; Gomez, A. Development of the TIP-HOLE gas avalanche structure for nuclear physics/astrophysics applications with radioactive isotope beams: Preliminary results. J. Phys. Conf. Ser. 2020, 1498, 012004. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lombardi, M.; Prete, G.; Balbinot, G.; Ferretti, A.; Galeazzi, G.; Battistella, A. Detection and Imaging with Leak Microstructures. Instruments 2021, 5, 15. https://doi.org/10.3390/instruments5020015
Lombardi M, Prete G, Balbinot G, Ferretti A, Galeazzi G, Battistella A. Detection and Imaging with Leak Microstructures. Instruments. 2021; 5(2):15. https://doi.org/10.3390/instruments5020015
Chicago/Turabian StyleLombardi, Mariano, Gianfranco Prete, Giovanni Balbinot, Alice Ferretti, Giuseppe Galeazzi, and Andrea Battistella. 2021. "Detection and Imaging with Leak Microstructures" Instruments 5, no. 2: 15. https://doi.org/10.3390/instruments5020015
APA StyleLombardi, M., Prete, G., Balbinot, G., Ferretti, A., Galeazzi, G., & Battistella, A. (2021). Detection and Imaging with Leak Microstructures. Instruments, 5(2), 15. https://doi.org/10.3390/instruments5020015