Phase Space Considerations for a microSAXS Beamline Located on a Diamond Laue Side-Bounce Monochromator
Abstract
:1. Introduction
2. Method
2.1. Flight Path of Length L without Aperture
2.2. Laue Monochromator
2.3. Focusing Element–Compound Refractive Lens
2.4. Reflection and Transmission Factors
2.5. Intensities and Marginal Widths along the Beam Path
3. Application
3.1. Configuration A: Laue Focusing Only
3.2. Configuration B: Laue Focusing and Focusing Element
3.3. Configuration C: Laue Focusing and Two Lenses
4. Results and Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Riekel, C. New avenues in X-ray microbeam experiments. Rep. Prog. Phys. 2000, 63, 233–262. [Google Scholar] [CrossRef]
- Roth, S.V.; Burghammer, M.; Riekel, C.; Müller-Buschbaum, P.; Diethert, A.; Panagiotou, P.; Walter, H. Self-assembled gradient nanoparticle-polymer multilayers investigated by an advanced characterisation method: Microbeam grazing incidence X-ray scattering. Appl. Phys. Lett. 2003, 82, 1935–1937. [Google Scholar] [CrossRef]
- Li, R.; Cornaby, S.; Kamperman, M.; Smilgies, D.-M. Nanocomposite characterization on multiple length scales using μSAXS. J. Synchrotron Radiat. 2011, 18, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Pollack, L.; Tate, M.W.; Darnton, N.C.; Knight, J.B.; Gruner, S.M.; Eaton, W.A.; Austin, R.H. Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle X-ray scattering. Proc. Nat. Acad. Sci. USA 1999, 96, 10115–10117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamb, J.S.; Cornaby, S.; Andresen, K.; Kwok, L.; Park, H.Y.; Qiu, X.; Smilgies, D.-M.; Bilderback, D.H.; Pollack, L. Focusing capillary optics for use in solution small-angle X-ray scattering. J. Appl. Cryst. 2007, 40, 193–195. [Google Scholar] [CrossRef] [Green Version]
- Sánchez del Rio, M.; Grübel, G.; Als-Nielsen, J.; Nielsen, M. Focusing characteristics of dia-mond crystal X-ray monochromators. An experimental and theoretical comparison. Rev. Sci. Instrum. 1995, 66, 5148–5152. [Google Scholar]
- Kvardakov, V.V.; Somenkov, V.A.; Lynn, J.W.; Mildner, D.F.R.; Chen, H. Laue focusing effect and its applications. Physica B 1998, 241–243, 1210–1212. [Google Scholar] [CrossRef]
- Matsushita, T.; Kaminaga, U. A systematic method of estimating the performance of X-ray optical systems for synchrotron radiation. I. Description of various optical elements in position-angle space for ideally monochromatic X-rays. J. Appl. Cryst. 1980, 13, 465–471. [Google Scholar] [CrossRef]
- Matsushita, T.; Kaminaga, U. A systematic method of estimating the performance of X-ray optical systems for synchrotron radiation. II. Treatment in position-angle-wavelength space. J. Appl. Cryst. 1980, 13, 472–478. [Google Scholar] [CrossRef]
- Pedersen, J.S.; Riekel, C. Resolution function and flux at the sample for small-angle X-ray scattering calculated in position-angle-wavelength space. J. Appl. Cryst. 1991, 24, 893–909. [Google Scholar] [CrossRef]
- Smilgies, D.-M. Compact matrix formalism for phase space analysis of complex optical systems. Appl. Opt. 2008, 47, E106–E115. [Google Scholar] [CrossRef] [PubMed]
- Shanks, J.; Barley, J.; Barrett, S.; Billing, M.; Codner, G.; Li, Y.; Liu, X.; Lyndaker, A.; Rice, D.; Rider, N.; et al. Accelerator design for the Cornell High Energy Synchrotron Source upgrade. Phys. Rev. Accel. Beams 2019, 22, 021602. [Google Scholar] [CrossRef] [Green Version]
- Shvyd’ko, Y. Theory and optical design of X-ray echo spectrometers. Phys. Rev. A 2017, 96, 023804. [Google Scholar]
- Lengeler, B.; Schroer, C.; Tümmler, J.; Benner, B.; Richwin, M.; Snigirev, A.; Snigireva, I.; Drakopoulos, M. Imaging by parabolic refractive lenses in the hard X-ray range. J. Synchrotron Radiat. 1999, 6, 1153–1167. [Google Scholar] [CrossRef]
- Center for X-ray Optics (CXRO). Available online: https://henke.lbl.gov/optical_constants/ (accessed on 21 July 2020).
- Grübel, G.; Abernathy, D.; Vignaud, G.; Sanchez del Rio, M.; Freund, A. A diamond double-crystal transmission monochromator for the TROIKA II station at ESRF. Rev. Sci. Instrum. 1996, 67, 1–4. [Google Scholar] [CrossRef] [Green Version]
- RX Optics—Design Parameters. Available online: https://www.rxoptics.de/design-parameters/ (accessed on 20 July 2020).
- Kreyszig, E. Advanced Engineering Mathematics, 4th ed.; Wiley: New York, NY, USA, 1979; pp. 885–889. [Google Scholar]
- Huang, R.; Szebenyi, T.; Pfeifer, M.; Woll, A.; Smilgies, D.-M.; Finkelstein, K.; Dale, D.; Wang, Y.; Vila Comamala, J.; Gillilan, R.; et al. Application of CHESS single-bounce capillaries at synchrotron beamlines. J. Phys. Conf. Ser. 2014, 493, 012034. [Google Scholar] [CrossRef]
- Smilgies, D.-M. Scherrer grain-size analysis adapted to grazing-incidence scattering with area detectors. J. Appl. Cryst. 2009, 42, 1030–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez del Rio, M.; Canestrari, N.; Jiang, F.; Franco Cerrina, F. SHADOW3: A new version of the synchrotron X-ray optics modelling package. J. Synchrotron Radiat. 2011, 18, 708–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrero, C.; Smilgies, D.-M.; Riekel, C.; Gatta, G.; Daly, P. Extending the possibilities in phase space analysis of synchrotron radiation X-ray optics. Appl. Opt. 2008, 47, E116–E124. [Google Scholar] [CrossRef] [PubMed]
- SMath Studio. Available online: https://en.smath.com/view/SMathStudio/summary (accessed on 21 June 2019).
(mm) | (Mrad) | (0.1%BW) | ||
---|---|---|---|---|
0.30 | 0.087 | 0.023 | 0.013 | 26 |
Mode | Flux at Sample (Photons/s) | Beam Size at Sample (µm) | Divergence at Sample (Mrad) | Beam Size at Detector (mm) | Resolution (nm) | Gain |
---|---|---|---|---|---|---|
A | 1.3 × 1012 | 855,316 | 0.087 | 0.48 | 2730 | 1 |
0.013 | 0.39 | 3420 | ||||
B | 3.6 × 1010 | 7.7 | 0.78 | 3.8 | 335 | 156 |
6.2 | 0.65 | 3.2 | 402 | |||
C | 1.2 × 109 | 1.1 | 0.78 | 3.9 | 334 | 707 |
0.3 | 0.75 | 3.8 | 345 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smilgies, D.-M. Phase Space Considerations for a microSAXS Beamline Located on a Diamond Laue Side-Bounce Monochromator. Instruments 2020, 4, 23. https://doi.org/10.3390/instruments4030023
Smilgies D-M. Phase Space Considerations for a microSAXS Beamline Located on a Diamond Laue Side-Bounce Monochromator. Instruments. 2020; 4(3):23. https://doi.org/10.3390/instruments4030023
Chicago/Turabian StyleSmilgies, Detlef-M. 2020. "Phase Space Considerations for a microSAXS Beamline Located on a Diamond Laue Side-Bounce Monochromator" Instruments 4, no. 3: 23. https://doi.org/10.3390/instruments4030023
APA StyleSmilgies, D. -M. (2020). Phase Space Considerations for a microSAXS Beamline Located on a Diamond Laue Side-Bounce Monochromator. Instruments, 4(3), 23. https://doi.org/10.3390/instruments4030023