A Theoretical Study of Doping Evolution of Phonons in High-Temperature Cuprate Superconductors
Abstract
:1. Introduction
2. Theoretical Model
3. Doping-Induced Fermi Surface Evolution of Phonon Softening in Cuprates
3.1. Case of La2−xSrxCuO4
3.2. Case of Bi2Sr2CaCu2O8+δ
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CDW | charge density wave |
SC | superconductivity |
BSCCO | Bi2Sr2CaCu2O8+δ |
LSCO | La2−xSrxCuO4 |
YBCO | YBa2Cu3O7−x |
LBCO | La2−xBaxCuO4 |
ARPES | angle-resolved photoemission spectroscopy |
RIXS | resonant inelastic X-ray scattering |
References
- Hoffman, J.E.; Hudson, E.W.; Lang, K.M.; Madhavan, V.; Eisaki, H.; Uchida, S.I.; Davis, J.C. A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ. Science 2002, 295, 466–469. [Google Scholar] [CrossRef] [PubMed]
- Ghiringhelli, G.; Le Tacon, M.; Minola, M.; Blanco-Canosa, S.; Mazzoli, C.; Brookes, N.B.; De Luca, G.M.; Frano, A.; Hawthorn, D.G.; He, F.; et al. Long-range incommensurate charge fluctuations in (Y, Nd) Ba2Cu3O6+x. Science 2012, 337, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Tsuei, C.C.; Kirtley, J.R. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 2000, 72, 969. [Google Scholar] [CrossRef]
- Fradkin, E.; Kivelson, S.A.; Tranquada, J.M. Colloquium: Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 2015, 87, 457. [Google Scholar] [CrossRef]
- Alloul, H.; Ohno, T.; Mendels, P. 89Y NMR Evidence for a Fermi-Liquid Behavior in YBa2Cu3O6+x. Phys. Rev. Lett. 1989, 63, 1700. [Google Scholar] [CrossRef]
- Renner, C.; Revaz, B.; Genoud, J.-Y.; Kadowaki, K.; Fischer, O. Pseudogap Precursor of the Superconducting Gap in Under and Overdoped Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 1998, 80, 149. [Google Scholar] [CrossRef]
- Ino, A.; Mizokawa, T.; Kobayashi, K.; Fujimori, A.; Sasagawa, T.; Kimura, T.; Kishio, K.; Tamasaku, K.; Eisaki, H.; Uchida, S. Doping Dependent Density of States and Pseudogap Behavior in La2−xSrxCuO4. Phys. Rev. Lett. 1998, 81, 2124. [Google Scholar] [CrossRef]
- Emery, V.J.; Kivelson, S.A.; Tranquada, J.M. Stripe phases in high-temperature superconductors. Proc. Natl. Acad. Sci. USA 1999, 96, 8814–8817. [Google Scholar] [CrossRef]
- Fauque, B.; Sidis, Y.; Hinkov, V.; Pailhes, S.; Lin, C.T.; Chaud, X.; Bourges, P. Magnetic order in the pseudogap phase of high-Tc superconductors. Phys. Rev. Lett. 2006, 96, 197001. [Google Scholar] [CrossRef]
- Sarkar, S.; Chakraborty, D.; Pepin, C. Incipient loop-current order in the underdoped cuprate superconductors. Phys. Rev. B 2019, 100, 214519. [Google Scholar] [CrossRef]
- He, R.H.; Hashimoto, M.; Karapetyan, H.; Koralek, J.D.; Hinton, J.P.; Testaud, J.P.; Nathan, V.; Yoshida, Y.; Yao, H.; Tanaka, K.; et al. From a single-band metal to a high-temperature superconductor via two thermal phase transitions. Science 2011, 331, 1579–1583. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.J.; Huang, H.; Lee, S.J.; Jang, H.; Knight, J.; Lee, Y.S.; Fujita, M.; Suzuki, K.M.; Asano, S.; Kivelson, S.A.; et al. Observation of two types of charge-density-wave orders in superconducting La2−xSrxCuO4. Nat. Commun. 2019, 10, 3269. [Google Scholar] [CrossRef] [PubMed]
- von Arx, K.; Wang, Q.; Mustafi, S.; Mazzone, D.G.; Horio, M.; Mukkattukavil, D.J.; Pomjakushina, E.; Pyon, S.; Takayama, T.; Takagi, H.; et al. Fate of charge order in overdoped La-based cuprates. NPJ Quantum Mater. 2023, 8, 7. [Google Scholar] [CrossRef]
- Li, Q.; Huang, H.Y.; Ren, T.; Weschke, E.; Ju, L.; Zou, C.; Zhang, S.; Qiu, Q.; Liu, J.; Ding, S.; et al. Prevailing Charge Order in Overdoped La2−xSrxCuO4 beyond the Superconducting Dome. Phys. Rev. Lett. 2023, 131, 116002. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.Y.; Fumagalli, R.; Ding, Y.; Minola, M.; Caprara, S.; Betto, D.; Bluschke, M.; De Luca, G.M.; Kummer, K.; Lefrançois, E.; et al. Re-entrant charge order in overdoped (Bi,Pb)2.12Sr1.88CuO6+δ outside the pseudogap regime. Nat. Mater. 2018, 17, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Arpaia, R.; Martinelli, L.; Sala, M.M.; Caprara, S.; Nag, A.; Brookes, N.B.; Camisa, P.; Li, Q.; Gao, Q.; Zhou, X.; et al. Signature of quantum criticality in cuprates by charge density fluctuations. Nat. Commun. 2023, 14, 7198. [Google Scholar] [CrossRef] [PubMed]
- Arpaia, R.; Caprara, S.; Fumagalli, R.; De Vecchi, G.; Peng, Y.Y.; Andersson, E.; Betto, D.; De Luca, G.M.; Brookes, N.B.; Lombardi, F.; et al. Dynamical charge density fluctuations pervading the phase diagram of a Cu-based high-Tc superconductor. Science 2019, 365, 906–910. [Google Scholar] [CrossRef]
- Yoshida, T.; Zhou, X.J.; Tanaka, K.; Yang, W.L.; Hussain, Z.; Shen, Z.X.; Fujimori, A.; Sahrakorpi, S.; Lindroos, M.; Markiewicz, R.S.; et al. Systematic doping evolution of the underlying Fermi surface of La2−xSrxCuO4. Phys. Rev. B 2006, 74, 224510. [Google Scholar] [CrossRef]
- Fujimori, A.; Ino, A.; Mizokawa, T.; Kim, C.; Shen, Z.X.; Sasagawa, T.; Kimura, T.; Kishio, K.; Takaba, M.; Tamasaku, K.; et al. Chemical potential shift, density of states and Fermi surfaces in overdoped and underdoped La2−xSrxCuO4. J. Phys. Chem. Solids 1998, 59, 1892–1896. [Google Scholar] [CrossRef]
- Zhong, Y.; Chen, Z.; Chen, S.D.; Xu, K.J.; Hashimoto, M.; He, Y.; Uchida, S.I.; Lu, D.; Mo, S.K.; Shen, Z.X.; et al. Differentiated roles of Lifshitz transition on thermodynamics and superconductivity in La2−xSrxCuO4. Proc. Natl. Acad. Sci. USA 2023, 119, e2204630119. [Google Scholar] [CrossRef]
- Kaminski, A.; Rosenkranz, S.; Fretwell, H.M.; Norman, M.R.; Randeria, M.; Campuzano, J.C.; Park, J.M.; Li, Z.Z.; Raffy, H. Change of Fermi-surface topology in Bi2Sr2CaCu2O8+δ with doping. Phys. Rev. B 2006, 73, 174511. [Google Scholar] [CrossRef]
- Loret, B.; Auvray, N.; Gallais, Y.; Cazayous, M.; Forget, A.; Colson, D.; Julien, M.-H.; Paul, I.; Civelli, M.; Sacuto, A. Intimate link between charge density wave, pseudogap and superconducting energy scales in cuprates. Nat. Phys. 2019, 15, 771–775. [Google Scholar] [CrossRef]
- Woll, E.J., Jr.; Kohn, W. Images of the fermi surface in phonon spectra of metals. Phys. Rev. 1962, 126, 1693. [Google Scholar] [CrossRef]
- Renker, B.; Rietschel, H.; Pintschovius, L.; Gläser, W.; Brüesch, P.; Kuse, D.; Rice, M.J. Observation of Giant Kohn Anomaly in the One-Dimensional Conductor K2Pt(CN)4 Br0.3·3H2O. Phys. Rev. Lett. 1973, 30, 1144. [Google Scholar] [CrossRef]
- Le Tacon, M.; Bosak, A.; Souliou, S.M.; Dellea, G.; Loew, T.; Heid, R.; Bohnen, K.P.; Ghiringhelli, G.; Krisch, M.; Keimer, B. Inelastic X-ray scattering in YBa2Cu3O6.6 reveals giant phonon anomalies and elastic central peak due to charge-density-wave formation. Nat. Phys. 2014, 10, 52–58. [Google Scholar] [CrossRef]
- Lee, W.S.; Zhou, K.J.; Hepting, M.; Li, J.; Nag, A.; Walters, A.C.; Garcia-Fernandez, M.; Robarts, H.C.; Hashimoto, M.; Lu, H.; et al. Spectroscopic fingerprint of charge order melting driven by quantum fluctuations in a cuprate. Nat. Phys. 2021, 17, 53–57. [Google Scholar] [CrossRef]
- Reznik, D.; Pintschovius, L.; Ito, M.; Iikubo, S.; Sato, M.; Goka, H.; Fujita, M.; Yamada, K.; Gu, G.D.; Tranquada, J.M. Electron–phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors. Nature 2006, 440, 1170–1173. [Google Scholar] [CrossRef] [PubMed]
- McQueeney, R.J.; Petrov, Y.; Egami, T.; Yethiraj, M.; Shirane, G.; Endoh, Y. Anomalous dispersion of LO phonons in La1.85Sr0.15CuO4 at low temperatures. Phys. Rev. Lett. 1999, 82, 628. [Google Scholar] [CrossRef]
- Lin, J.Q.; Miao, H.; Mazzone, D.G.; Gu, G.D.; Nag, A.; Walters, A.C.; García-Fernández, M.; Barbour, A.; Pelliciari, J.; Jarrige, I.; et al. Strongly correlated charge density wave in La2−xSrxCuO4 evidenced by doping-dependent phonon anomaly. Phys. Rev. Lett. 2020, 124, 207005. [Google Scholar] [CrossRef]
- Wang, Q.; von Arx, K.; Horio, M.; Mukkattukavil, D.J.; Küspert, J.; Sassa, Y.; Schmitt, T.; Nag, A.; Pyon, S.; Takayama, T.; et al. Charge order lock-in by electron-phonon coupling in La1.675Eu0.2Sr0.125CuO4. Sci. Adv. 2021, 7, eabg7394. [Google Scholar] [CrossRef]
- Lu, H.; Hashimoto, M.; Chen, S.D.; Ishida, S.; Song, D.; Eisaki, H.; Nag, A.; Garcia-Fernandez, M.; Arpaia, R.; Ghiringhelli, G.; et al. Identification of a characteristic doping for charge order phenomena in Bi-2212 cuprates via RIXS. Phys. Rev. B 2022, 106, 155109. [Google Scholar] [CrossRef]
- Sarkar, S.; Grandadam, M.; Pepin, C. Anomalous softening of phonon dispersion in cuprate superconductors. Phys. Rev. Res. 2021, 3, 013162. [Google Scholar] [CrossRef]
- Pepin, C.; Chakraborty, D.; Grandadam, M.; Sarkar, S. Fluctuations and the Higgs mechanism in underdoped cuprates. Annu. Rev. Condens. Matter Phys. 2020, 11, 301–323. [Google Scholar] [CrossRef]
- Lee, P.A.; Rice, T.M.; Anderson, P.W. Conductivity from charge or spin density waves. Solid State Commun. 1993, 88, 1001. [Google Scholar] [CrossRef]
- Efetov, K.B.; Meier, H.; Pepin, C. Pseudogap state near a quantum critical point. Nat. Phys. 2013, 9, 442–446. [Google Scholar] [CrossRef]
- Wang, Y.; Chubukov, A. Charge-density-wave order with momentum (2 Q, 0) and (0, 2 Q) within the spin-fermion model: Continuous and discrete symmetry breaking, preemptive composite order, and relation to pseudogap in hole-doped cuprates. Phys. Rev. B 2014, 90, 035149. [Google Scholar] [CrossRef]
- da Silva Neto, E.H.; Aynajian, P.; Frano, A.; Comin, R.; Schierle, E.; Weschke, E.; Gyenis, A.; Wen, J.; Schneeloch, J.; Xu, Z.; et al. Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates. Science 1993, 343, 393–396. [Google Scholar] [CrossRef]
- Comin, R.; Frano, A.; Yee, M.M.; Yoshida, Y.; Eisaki, H.; Schierle, E.; Weschke, E.; Sutarto, R.; He, F.; Soumyanarayanan, A.; et al. Charge order driven by Fermi-arc instability in Bi2Sr2−xLaxCuO6+δ. Science 2014, 342, 390–392. [Google Scholar] [CrossRef] [PubMed]
- Grandadam, M.; Chakraborty, D.; Montiel, X.; Pépin, C. Electronic spectral function in the fractionalized pair density wave scenario. Phys. Rev. B 2020, 102, 121104(R). [Google Scholar] [CrossRef]
- Chakraborty, D.; Grandadam, M.; Hamidian, M.H.; Davis, J.C.S.; Sidis, Y.; Pépin, C. Fractionalized pair density wave in the pseudogap phase of cuprate superconductors. Phys. Rev. B 2019, 100, 224511. [Google Scholar] [CrossRef]
- Scalapino, D.J. The case for dx2-y2 pairing in the cuprate superconductors. Phys. Rep. 1995, 250, 329–365. [Google Scholar] [CrossRef]
- Chakraborty, D.; Black-Schaffer, A.M. Odd-frequency pair density wave correlations in underdoped cuprates. New J. Phys. 2021, 23, 033001. [Google Scholar] [CrossRef]
- Eschrig, M.; Norman, M.R. Effect of the magnetic resonance on the electronic spectra of high Tc superconductors. Phys. Rev. B 2003, 67, 144503. [Google Scholar] [CrossRef]
- Tranquada, J.M.; Sternlieb, B.J.; Axe, J.D.; Nakamura, Y.; Uchida, S.I. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 1995, 375, 561–563. [Google Scholar] [CrossRef]
- Devereaux, T.P.; Cuk, T.; Shen, Z.X.; Nagaosa, N. Anisotropic electron-phonon interaction in the cuprates. Phys. Rev. Lett. 2004, 93, 117004. [Google Scholar] [CrossRef]
Tight-Binding Parameters | ||||||
---|---|---|---|---|---|---|
Case: | ||||||
1 | −0.7823 | 0.0740 | −0.0587 | −0.1398 | −0.0174 | 0.0801 |
2 | −0.7823 | 0.0740 | −0.0487 | −0.1398 | −0.0074 | 0.080 |
3 | −0.7823 | 0.0740 | −0.0287 | −0.1398 | −0.0044 | 0.0795 |
4 | −0.7823 | 0.0740 | −0.0187 | −0.1398 | −0.0024 | 0.0793 |
5 | −0.7823 | 0.0740 | −0.0087 | −0.1398 | −0.0014 | 0.079 |
6 | −0.7823 | 0.0740 | −0.006 | −0.1398 | −0.00038 | 0.0789 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkar, S. A Theoretical Study of Doping Evolution of Phonons in High-Temperature Cuprate Superconductors. Condens. Matter 2024, 9, 13. https://doi.org/10.3390/condmat9010013
Sarkar S. A Theoretical Study of Doping Evolution of Phonons in High-Temperature Cuprate Superconductors. Condensed Matter. 2024; 9(1):13. https://doi.org/10.3390/condmat9010013
Chicago/Turabian StyleSarkar, Saheli. 2024. "A Theoretical Study of Doping Evolution of Phonons in High-Temperature Cuprate Superconductors" Condensed Matter 9, no. 1: 13. https://doi.org/10.3390/condmat9010013
APA StyleSarkar, S. (2024). A Theoretical Study of Doping Evolution of Phonons in High-Temperature Cuprate Superconductors. Condensed Matter, 9(1), 13. https://doi.org/10.3390/condmat9010013