Suppression of Stacking Order with Doping in 1T-TaS2−xSex
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, J.A.; Di Salvo, F.; Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 1975, 24, 117–201. [Google Scholar] [CrossRef]
- Liu, Y.; Ang, R.; Lu, W.J.; Song, W.H.; Li, L.J.; Sun, Y.P. Superconductivity induced by Se-doping in layered charge density-wave system 1T-TaS2−xSex. Appl. Phys. Lett. 2013, 102, 192602. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, D.F.; Li, L.J.; Lu, W.J.; Zhu, X.D.; Tong, P.; Xiao, R.C.; Ling, L.S.; Xi, C.Y.; Pi, L. Nature of charge density waves and superconductivity in 1 T-TaSe2- x Te x. Phys. Rev. B 2016, 94, 045131. [Google Scholar] [CrossRef]
- Wang, Y.D.; Yao, W.L.; Xin, Z.M.; Han, T.T.; Wang, Z.G.; Chen, L.; Cai, C.; Li, Y.; Zhang, Y. Band insulator to Mott insulator transition in 1T-TaS2. Nat. Commun. 2020, 11, 4215. [Google Scholar] [CrossRef]
- Sipos, B.; Kusmartseva, A.F.; Akrap, A.; Berger, H.; Forro, L.; Tutis, E. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 2008, 7, 960–965. [Google Scholar] [CrossRef]
- Law, K.T.; Lee, P.A. 1T-TaS2 as a quantum spin liquid. Proc. Natl. Acad. Sci. USA 2017, 114, 6996–7000. [Google Scholar] [CrossRef]
- Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 2011, 23, 213001. [Google Scholar] [CrossRef]
- Chen, V.; Lee, H.R.; Koroglu, C.; McClellan, C.J.; Daus, A.; Pop, E. Ambipolar Thickness-Dependent Thermoelectric Measurements of WSe2. Nano Lett. 2023, 23, 4095–4100. [Google Scholar]
- Sun, K.; Sun, S.; Zhu, C.; Tian, H.; Yang, H.; Li, J. Hidden CDW states and insulator-to-metal transition after a pulsed femtosecond laser excitation in layered chalcogenide 1T-TaS2−x Se x. Sci. Adv. 2018, 4, eaas9660. [Google Scholar] [CrossRef]
- Butler, C.J.; Yoshida, M.; Hanaguri, T.; Iwasa, Y. Mottness versus unit-cell doubling as the driver of the insulating state in 1T-TaS2. Nat. Commun. 2020, 11, 2477. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, J. Stacking order and driving forces in the layered charge density wave phase of 1T-MX2 (M = Nb, Ta and X = S, Se). Mater. Res. Express 2023, 10, 046302. [Google Scholar] [CrossRef]
- Warawa, K.; Christophel, N.; Sobolev, S.; Demsar, J.; Roskos, H.G.; Thomson, M.D. Combined investigation of collective amplitude and phase modes in a quasi-one-dimensional charge-density-wave system over a wide spectral range. arXiv 2023, arXiv:2303.08558. [Google Scholar] [CrossRef]
- Hansen, M.O.; Palan, Y.; Hahn, V.; Thomson, M.D.; Warawa, K.; Roskos, H.G.; Demsar, J.; Pientka, F.; Tsyplyatyev, O.; Kopietz, P. Collective modes in the charge-density wave state of K0.3MoO3: The role of long-range Coulomb interactions revisited. Phys. Rev. B 2023, 108, 045148. [Google Scholar] [CrossRef]
- Manzke, R.; Buslaps, T.; Pfalzgraf, B.; Skibowksi, M.; Anderson, O. On the Phase Transitions in 1T-TaS2. Europhys. Lett. 1989, 8, 195–200. [Google Scholar] [CrossRef]
- Wegner, A.; Zhao, J.; Li, J.; Yang, J.; Anikin, A.A.; Karapetrov, G.; Esfarjani, K.; Louca, D.; Chatterjee, U. Evidence for pseudo–Jahn-Teller distortions in the charge density wave phase of 1T-TiSe2. Phys. Rev. B 2020, 101, 195145. [Google Scholar] [CrossRef]
- Chatterjee, U.; Zhao, J.; Iavarone, M.; Di Capua, R.; Castellan, J.; Karapetrov, G.; Malliakas, C.; Kanatzidis, M.G.; Claus, H.; Ruff, J.; et al. Emergence of coherence in the charge-density wave state of 2 H-NbSe2. Nat. Commun. 2015, 6, 6313. [Google Scholar] [CrossRef]
- van Wezel, J.; Nahai-Williamson, P.; Saxena, S.S. An alternative interpretation of recent ARPES measurements on TiSe2. Europhys. Lett. 2010, 89, 47004. [Google Scholar] [CrossRef]
- Ang, R.; Wang, Z.C.; Chen, C.L.; Tang, J.; Liu, N.; Liu, Y.; Lu, W.J.; Sun, Y.P.; Mori, T.; Ikuhara, Y. Atomistic origin of an ordered superstructure induced superconductivity in layered chalcogenides. Nat. Commun. 2015, 6, 6091. [Google Scholar] [CrossRef]
- Spijkerman, A.; de Boer, J.L.; Meetsma, A.; Wiegers, G.A.; van Smaalen, S. X-ray crystal-structure refinement of the nearly commensurate phase of 1 T-TaS2 in (3+2)-dimensional superspace. Phys. Rev. B 1997, 56, 13757. [Google Scholar] [CrossRef]
- Fazekas, P.; Tosatti, E. Electrical, structural and magnetic properties of pure and doped 1T-TaS2. Philos. Mag. B 1979, 39, 229–244. [Google Scholar] [CrossRef]
- Wilson, J.A.; Di Salvo, F.J.; Mahajan, S. Charge-Density Waves in Metallic, Layered, Transition-Metal Dichalcogenides. Phys. Rev. Lett. 1974, 32, 882–885. [Google Scholar] [CrossRef]
- Canfield, P.C.; Gammel, P.L.; Bishop, D.J. New Magnetic Superconductors: A Toy Box for Solid State Physicists. Phys. Today 1998, 51, 40–46. [Google Scholar] [CrossRef]
- Kvashnin, Y.; VanGennep, D.; Mito, M.; Medvedev, S.A.; Thiyagarajan, R.; Karis, O.; Vasiliev, A.N.; Eriksson, O.; Abdel-Hafiez, M. Coexistence of Superconductivity and Charge Density Waves in Tantalum Disulfide: Experiment and Theory. Phys. Rev. Lett. 2020, 125, 186401. [Google Scholar] [CrossRef] [PubMed]
- Egami, T.; Billinge, S.J. Underneath the Bragg Peaks: Structural Analysis of Complex Materials; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Lee, J.; Demura, S.; Stone, M.B.; Iida, K.; Ehlers, G.; Dela Cruz, C.R.; Matsuda, M.; Deguchi, K.; Takano, Y.; Mizuguchi, Y.; et al. Coexistence of ferromagnetism and superconductivity in CeO 0.3 F 0.7 BiS 2. Phys. Rev. B 2014, 90, 224410. [Google Scholar] [CrossRef]
- Smith, N.V.; Kevan, S.D.; Disalvo, F.J. Band structures of the layer compounds 1T-TaS, and 2H-TaSe, in the presence of commensurate charge-density waves. J. Phys. C Solid State Phys. 1985, 18, 3175–3189. [Google Scholar] [CrossRef]
- Aiura, Y.; Hase, I.; Yagi-Watanabe, K.; Bando, H.; Ozawa, K.; Tanaka, K.; Kitagawa, R.; Maruyama, S.; Iwase, T.; Nishihara, Y.; et al. Increase in charge-density-wave potential of 1T-TaSxSe2−x. Phys. Rev. B 2004, 69, 245123. [Google Scholar] [CrossRef]
- Zwick, F.; Berger, H.; Vobornik, I.; Margaritondo, G.; Forró, L.; Beeli, C.; Onellion, M.; Panaccione, G.; Taleb-Ibrahimi, A.; Grioni, M. Spectral Consequences of Broken Phase Coherence in 1T-TaS2. Phys. Rev. Lett. 1998, 81, 1058–1061. [Google Scholar] [CrossRef]
- Fei, Y.; Wu, Z.; Zhang, W.; Yin, Y. Understanding the Mott insulating state in 1 T-TaS2 and 1 T-TaSe2. AAPPS Bull. 2022, 32, 20. [Google Scholar] [CrossRef]
- Bovet, M.; Popović, D.; Clerc, F.; Koitzsch, C.; Probst, U.; Bucher, E.; Berger, H.; Naumović, D.; Aebi, P. Pseudogapped Fermi surfaces of 1T-TaS2 and 1T-TaSe2: A charge density wave effect. Phys. Rev. B 2004, 69, 125117. [Google Scholar] [CrossRef]
- Ritschel, T.; Trinckauf, J.; Koepernik, K.; Büchner, B.; Zimmermann, M.v.; Berger, H.; Joe, Y.; Abbamonte, P.; Geck, J. Orbital textures and charge density waves in transition metal dichalcogenides. Nat. Phys. 2015, 11, 328–331. [Google Scholar] [CrossRef]
- Ritschel, T.; Berger, H.; Geck, J. Stacking-driven gap formation in layered 1T-TaS 2. Phys. Rev. B 2018, 98, 195134. [Google Scholar] [CrossRef]
- Lee, S.H.; Goh, J.S.; Cho, D. Origin of the Insulating Phase and First-Order Metal-Insulator Transition in 1 T-TaS2. Phys. Rev. Lett. 2019, 122, 106404. [Google Scholar] [CrossRef] [PubMed]
- Philip, S.S.; Neuefeind, J.C.; Stone, M.B.; Louca, D. Local structure anomaly with the charge ordering transition of 1T-TaS2. Phys. Rev. B 2023, 107, 184109. [Google Scholar] [CrossRef]
- Scruby, C.B.; Williams, P.M.; Parry, G. The role of charge density waves in structural transformations of 1T TaS2. Philos. Mag. 1975, 31, 255–274. [Google Scholar] [CrossRef]
- Petkov, V.; Peralta, J.; Aoun, B.; Ren, Y. Atomic structure and Mott nature of the insulating charge density wave phase of 1T-TaS2. J. Phys. Condens. Matter 2022, 34, 345401. [Google Scholar] [CrossRef]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef]
- Proffen, T.; Billinge, S.; Egami, T.; Louca, D. Structural analysis of complex materials using the atomic pair distribution function—A practical guide. Z. FÜR-Krist.-Cryst. Mater. 2003, 218, 132–143. [Google Scholar] [CrossRef]
- Warren, B.E. X-ray Diffraction; Courier Corporation: North Chelmsford, MA, USA, 1990. [Google Scholar]
- Peterson, P.; Gutmann, M.; Proffen, T.; Billinge, S. PDFgetN: A user-friendly program to extract the total scattering structure factor and the pair distribution function from neutron powder diffraction data. J. Appl. Crystallogr. 2000, 33, 1192. [Google Scholar] [CrossRef]
- Ji, J.; Yu, G.; Xu, C.; Xiang, H. General Theory for Bilayer Stacking Ferroelectricity. Phys. Rev. Lett. 2023, 130, 146801. [Google Scholar] [CrossRef]
- Bennett, D.; Remez, B. On electrically tunable stacking domains and ferroelectricity in moiré superlattices. npj 2D Mater. Appl. 2022, 6, 7. [Google Scholar] [CrossRef]
- Yasuda, K.; Wang, X.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 2021, 372, 1458–1462. [Google Scholar]
- Gong, C.; Zhang, P.; Norden, T.; Li, Q.; Guo, Z.; Chaturvedi, A.; Najafi, A.; Lan, S.; Liu, X.; Wang, Y.; et al. Ferromagnetism emerged from non-ferromagnetic atomic crystals. Nat. Commun. 2023, 14, 3839. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Philip, S.S.; Louca, D.; Stone, M.B.; Kolesnikov, A.I. Suppression of Stacking Order with Doping in 1T-TaS2−xSex. Condens. Matter 2023, 8, 89. https://doi.org/10.3390/condmat8040089
Philip SS, Louca D, Stone MB, Kolesnikov AI. Suppression of Stacking Order with Doping in 1T-TaS2−xSex. Condensed Matter. 2023; 8(4):89. https://doi.org/10.3390/condmat8040089
Chicago/Turabian StylePhilip, Sharon S., Despina Louca, Matthew B. Stone, and Alexander I. Kolesnikov. 2023. "Suppression of Stacking Order with Doping in 1T-TaS2−xSex" Condensed Matter 8, no. 4: 89. https://doi.org/10.3390/condmat8040089
APA StylePhilip, S. S., Louca, D., Stone, M. B., & Kolesnikov, A. I. (2023). Suppression of Stacking Order with Doping in 1T-TaS2−xSex. Condensed Matter, 8(4), 89. https://doi.org/10.3390/condmat8040089