Charge-Density Waves vs. Superconductivity: Some Results and Future Perspectives
Abstract
:1. Introduction
2. Experimental Evidence for the Competition between Superconductivity and Charge-Density Waves in Some Selected Systems
2.1. Transition Metal Dichalcogenides
2.2. High-Critical Temperature Superconducting Cuprates
3. The Ginzburg–Landau Model for the Competition of Two Phases
4. Competition between Superconductivity and Charge-Density Waves as a Mechanism Promoting Filamentary Superconductivity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hwang, H.Y.; Iwasa, Y.; Kawasaki, M.; Keimer, B.; Nagaosa, N.; Tokura, Y. Emergent phenomena at oxide interfaces. Nat. Mater. 2012, 11, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, H.; Giustiniano, F.; Eda, G. Electronic transport properties of transition metal dichalcogenide field-effect devices: Surface and interface effects. Chem. Soc. Rev. 2015, 44, 7715–7736. [Google Scholar] [CrossRef]
- Rajan, A.; Underwood, K.; Mazzola, F.; King, P.D.C. Morphology control of epitaxial monolayer transition metal dichalcogenides. Phys. Rev. Mater. 2020, 4, 014003. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Fan, Y.; Mei, L.; Shin, H.S.; Voiry, D.; Lu, Q.; Li, J.; Zeng, Z. Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials. Nat. Synth. 2023, 2, 101–118. [Google Scholar] [CrossRef]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, Y.; Nojima, T.; Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2016, 2, 16094. [Google Scholar] [CrossRef] [Green Version]
- Tsen, A.; Hunt, B.; Kim, Y.; Yuan, Z.; Jia, S.; Cava, R.; Hone, J.; Kim, P.; Dean, C.; Pasupathy, A. Nature of the quantum metal in a two-dimensional crystalline superconductor. Nat. Phys. 2016, 12, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Kapitulnik, A.; Kivelson, S.A.; Spivak, B. Colloquium: Anomalous metals: Failed superconductors. Rev. Mod. Phys. 2019, 91, 011002. [Google Scholar] [CrossRef] [Green Version]
- Dezi, G.; Scopigno, N.; Caprara, S.; Grilli, M. Negative electronic compressibility and nanoscale inhomogeneity in ionic-liquid gated two-dimensional superconductors. Phys. Rev. B 2018, 98, 214507. [Google Scholar] [CrossRef] [Green Version]
- Caprara, S.; Grilli, M.; Benfatto, L.; Castellani, C. Effective medium theory for superconducting layers: A systematic analysis including space correlation effects. Phys. Rev. B 2011, 84, 014514. [Google Scholar] [CrossRef] [Green Version]
- Tinkham, M. Introduction to Superconductivity; Courier Corporation: Washington, DC, USA, 2004. [Google Scholar]
- Biscaras, J.; Bergeal, N.; Hurand, S.; Feuillet-Palma, C.; Rastogi, A.; Budhani, R.; Grilli, M.; Caprara, S.; Lesueur, J. Multiple quantum criticality in a two-dimensional superconductor. Nat. Mater. 2013, 12, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Bucheli, D.; Caprara, S.; Castellani, C.; Grilli, M. Metal–superconductor transition in low-dimensional superconducting clusters embedded in two-dimensional electron systems. New J. Phys. 2013, 15, 023014. [Google Scholar] [CrossRef]
- Caprara, S.; Biscaras, J.; Bergeal, N.; Bucheli, D.; Hurand, S.; Feuillet-Palma, C.; Rastogi, A.; Budhani, R.; Lesueur, J.; Grilli, M. Multiband superconductivity and nanoscale inhomogeneity at oxide interfaces. Phys. Rev. B 2013, 88, 020504. [Google Scholar] [CrossRef] [Green Version]
- Prawiroatmodjo, G.E.; Trier, F.; Christensen, D.V.; Chen, Y.; Pryds, N.; Jespersen, T.S. Evidence of weak superconductivity at the room-temperature grown LaAlO3/SrTiO3 interface. Phys. Rev. B 2016, 93, 184504. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Xing, Y.; Wang, P.; Liu, H.; Fu, H.; Zhang, Y.; He, L.; Xie, X.; Lin, X.; Nie, J.; et al. Observation of quantum griffiths singularity and ferromagnetism at the superconducting LaAlO3/SrTiO3(110) interface. Phys. Rev. B 2016, 94, 144517. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y.; Nojima, T.; Iwasa, Y. Quantum phase transitions in highly crystalline two-dimensional superconductors. Nat. Commun. 2018, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Caprara, S.; Peronaci, F.; Grilli, M. Intrinsic instability of electronic interfaces with strong Rashba coupling. Phys. Rev. Lett. 2012, 109, 196401. [Google Scholar] [CrossRef] [Green Version]
- Scopigno, N.; Bucheli, D.; Caprara, S.; Biscaras, J.; Bergeal, N.; Lesueur, J.; Grilli, M. Phase separation from electron confinement at oxide interfaces. Phys. Rev. Lett. 2016, 116, 026804. [Google Scholar] [CrossRef] [Green Version]
- Caprara, S.; Bergeal, N.; Lesueur, J.; Grilli, M. Interplay between density and superconducting quantum critical fluctuations. J. Phys. Condens. Matter 2015, 27, 425701. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Huang, J.; Guo, W.; Yang, R.; Hu, T.; Yu, A.; Huang, Y.; Zhang, M.; Zhang, W.; Zhang, J.M.; et al. Pressure tuning of the iron-based superconductor (Ca0.73La0.27)FeAs2. Phys. Rev. B 2021, 103, 024502. [Google Scholar] [CrossRef]
- Xiao, H.; Hu, T.; Dioguardi, A.; Shockley, A.; Crocker, J.; Nisson, D.; Viskadourakis, Z.; Tee, X.; Radulov, I.; Almasan, C.; et al. Evidence for filamentary superconductivity nucleated at antiphase domain walls in antiferromagnetic CaFe2As2. Phys. Rev. B 2012, 85, 024530. [Google Scholar]
- Xiao, H.; Hu, T.; He, S.; Shen, B.; Zhang, W.; Xu, B.; He, K.; Han, J.; Singh, Y.; Wen, H.; et al. Filamentary superconductivity across the phase diagram of Ba(Fe, Co)2As2. Phys. Rev. B 2012, 86, 064521. [Google Scholar] [CrossRef] [Green Version]
- Gofryk, K.; Pan, M.; Cantoni, C.; Saparov, B.; Mitchell, J.E.; Sefat, A.S. Local inhomogeneity and filamentary superconductivity in Pr-doped CaFe2As2. Phys. Rev. Lett. 2014, 112, 047005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machida, K. Magnetism in La2CuO4 based compounds. Phys. C Supercond. 1989, 158, 192–196. [Google Scholar] [CrossRef]
- Kato, M.; Machida, K.; Nakanishi, H.; Fujita, M. Soliton lattice modulation of incommensurate spin density wave in two dimensional Hubbard model-a mean field study. J. Phys. Soc. Jpn. 1990, 59, 1047–1058. [Google Scholar] [CrossRef]
- Carlson, E.W.; Yao, D.X.; Campbell, D.K. Spin waves in striped phases. Phys. Rev. B 2004, 70, 064505. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Yao, D.X.; Li, S.; Hong, T.; Chen, Y.; Chang, S.; Ratcliff, W.; Lynn, J.W.; Mook, H.A.; Chen, G.F.; et al. Low Energy Spin Waves and Magnetic Interactions in SrFe2As2. Phys. Rev. Lett. 2008, 101, 167203. [Google Scholar] [CrossRef] [Green Version]
- Li, L.J.; O’Farrell, E.C.; Loh, K.P.; Eda, G.; Özyilmaz, B.; Castro Neto, A.H. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 2016, 529, 185–189. [Google Scholar] [CrossRef] [Green Version]
- Liao, M.; Wang, H.; Zhu, Y.; Shang, R.; Rafique, M.; Yang, L.; Zhang, H.; Zhang, D.; Xue, Q.K. Coexistence of resistance oscillations and the anomalous metal phase in a lithium intercalated TiSe2 superconductor. Nat. Commun. 2021, 12, 5342. [Google Scholar] [CrossRef]
- Piatti, E.; Prando, G.; Meinero, M.; Tresca, C.; Putti, M.; Roddaro, S.; Lamura, G.; Shiroka, T.; Carretta, P.; Profeta, G.; et al. Superconductivity induced by gate-driven hydrogen intercalation in the charge-density-wave compound 1T-TiSe2. arXiv 2022, arXiv:2205.12951. [Google Scholar] [CrossRef]
- Spera, M.; Scarfato, A.; Giannini, E.; Renner, C. Energy-dependent spatial texturing of charge order in 1T-Cux TiSe2. Phys. Rev. B 2019, 99, 155133. [Google Scholar] [CrossRef] [Green Version]
- Burk, B.; Thomson, R.; Zettl, A.; Clarke, J. Charge-density-wave domains in 1T-TaS2 observed by satellite structure in scanning-tunneling-microscopy images. Phys. Rev. Lett. 1991, 66, 3040. [Google Scholar] [CrossRef]
- McMillan, W. Time-dependent Laudau theory of charge-density waves in transition-metal dichalcogenides. Phys. Rev. B 1975, 12, 1197. [Google Scholar] [CrossRef]
- Kashiwaya, S.; Tanaka, Y. Tunnelling effects on surface bound states in unconventional superconductors. Rep. Prog. Phys. 2000, 63, 1641. [Google Scholar] [CrossRef]
- Joe, Y.I.; Chen, X.M.; Ghaemi, P.; Finkelstein, K.D.; De La Peña, G.A.; Gan, Y.; Lee, J.C.; Yuan, S.; Geck, J.; MacDougall, G.J.; et al. Emergence of charge density wave domain walls above the superconducting dome in 1T-TiSe2. Nat. Phys. 2014, 10, 421–425. [Google Scholar] [CrossRef]
- Kogar, A.; De La Pena, G.A.; Lee, S.; Fang, Y.; Sun, S.X.; Lioi, D.B.; Karapetrov, G.; Finkelstein, K.D.; Ruff, J.P.; Abbamonte, P.; et al. Observation of a Charge Density Wave Incommensuration Near the Superconducting Dome in CuxTiSe2. Phys. Rev. Lett. 2017, 118, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ang, R.; Lu, W.; Song, W.; Li, L.; Sun, Y. Superconductivity induced by Se-doping in layered charge-density-wave system 1T-TaS2−xSex. Appl. Phys. Lett. 2013, 102, 192602. [Google Scholar]
- Sipos, B.; Kusmartseva, A.F.; Akrap, A.; Berger, H.; Forró, L.; Tutis, E. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 2008, 7, 960–965. [Google Scholar] [CrossRef] [Green Version]
- Mutka, H. Superconductivity in irradiated charge-density-wave compounds 2H – NbSe2, 2H– TaS2, and 2H– TaSe2. Phys. Rev. B 1983, 28, 2855. [Google Scholar] [CrossRef]
- Qian, D.; Hsieh, D.; Wray, L.; Morosan, E.; Wang, N.; Xia, Y.; Cava, R.; Hasan, M. Emergence of Fermi pockets in a new excitonic charge-density-wave melted superconductor. Phys. Rev. Lett. 2007, 98, 117007. [Google Scholar] [CrossRef] [Green Version]
- Di Salvo, F.J.; Moncton, D.; Waszczak, J. Electronic properties and superlattice formation in the semimetal TiSe2. Phys. Rev. B 1976, 14, 4321. [Google Scholar] [CrossRef]
- Kidd, T.; Miller, T.; Chou, M.; Chiang, T.C. Electron-hole coupling and the charge density wave transition in TiSe2. Phys. Rev. Lett. 2002, 88, 226402. [Google Scholar] [CrossRef] [Green Version]
- Cercellier, H.; Monney, C.; Clerc, F.; Battaglia, C.; Despont, L.; Garnier, M.; Beck, H.; Aebi, P.; Patthey, L.; Berger, H.; et al. Evidence for an Excitonic Insulator Phase in 1T-TiSe2. Phys. Rev. Lett. 2007, 99, 146403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellmann, S.; Rohwer, T.; Kalläne, M.; Hanff, K.; Sohrt, C.; Stange, A.; Carr, A.; Murnane, M.; Kapteyn, H.; Kipp, L.; et al. Time-domain classification of charge-density-wave insulators. Nat. Commun. 2012, 3, 1069. [Google Scholar] [CrossRef] [Green Version]
- Rohwer, T.; Hellmann, S.; Wiesenmayer, M.; Sohrt, C.; Stange, A.; Slomski, B.; Carr, A.; Liu, Y.; Avila, L.M.; Kalläne, M.; et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature 2011, 471, 490–493. [Google Scholar] [CrossRef]
- Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 2011, 23, 213001. [Google Scholar] [CrossRef]
- Weber, F.; Rosenkranz, S.; Castellan, J.P.; Osborn, R.; Karapetrov, G.; Hott, R.; Heid, R.; Bohnen, K.P.; Alatas, A. Electron-phonon coupling and the soft phonon mode in TiSe2. Phys. Rev. Lett. 2011, 107, 266401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porer, M.; Leierseder, U.; Ménard, J.M.; Dachraoui, H.; Mouchliadis, L.; Perakis, I.E.; Heinzmann, U.; Demsar, J.; Rossnagel, K.; Huber, R. Non-thermal separation of electronic and structural orders in a persisting charge density wave. Nat. Mater. 2014, 13, 857–861. [Google Scholar] [CrossRef] [Green Version]
- van Wezel, J.; Nahai-Williamson, P.; Saxena, S.S. An alternative interpretation of recent ARPES measurements on TiSe2. Europhys. Lett. 2010, 89, 47004. [Google Scholar] [CrossRef] [Green Version]
- van Wezel, J.; Nahai-Williamson, P.; Saxena, S.S. Exciton-phonon-driven charge density wave in TiSe2. Phys. Rev. B 2010, 81, 165109. [Google Scholar] [CrossRef]
- Novello, A.M.; Spera, M.; Scarfato, A.; Ubaldini, A.; Giannini, E.; Bowler, D.; Renner, C. Stripe and Short Range Order in the Charge Density Wave of 1T-CuxTiSe2. Phys. Rev. Lett. 2017, 118, 017002. [Google Scholar] [PubMed] [Green Version]
- Yan, S.; Iaia, D.; Morosan, E.; Fradkin, E.; Abbamonte, P.; Madhavan, V. Influence of Domain Walls in the Incommensurate Charge Density Wave State of Cu Intercalated 1T-TiSe2. Phys. Rev. Lett. 2017, 118, 106405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novello, A.M.; Hildebrand, B.; Scarfato, A.; Didiot, C.; Monney, G.; Ubaldini, A.; Berger, H.; Bowler, D.; Aebi, P.; Renner, C. Scanning tunneling microscopy of the charge density wave in 1T-TiSe2 in the presence of single atom defects. Phys. Rev. B 2015, 92, 081101. [Google Scholar] [CrossRef] [Green Version]
- Hildebrand, B.; Didiot, C.; Novello, A.M.; Monney, G.; Scarfato, A.; Ubaldini, A.; Berger, H.; Bowler, D.; Renner, C.; Aebi, P. Doping Nature of Native Defects in 1T-TiSe2. Phys. Rev. Lett. 2014, 112, 197001. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Calleja, E.; Alldredge, J.; Zhu, X.; Li, L.; Lu, W.; Sun, Y.; Wolf, T.; Berger, H.; McElroy, K. Microscopic evidence for strong periodic lattice distortion in two-dimensional charge-density wave systems. Phys. Rev. B 2014, 89, 165140. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, D.; Jo, S.; Berger, H.; Morpurgo, A.F. Gate-induced superconductivity in atomically thin MoS2 crystals. Nat. Nanotechnol. 2016, 11, 339–344. [Google Scholar]
- Petach, T.A.; Reich, K.V.; Zhang, X.; Watanabe, K.; Taniguchi, T.; Shklovskii, B.I.; Goldhaber-Gordon, D. Disorder from the bulk ionic liquid in electric double layer transistors. ACS Nano 2017, 11, 8395–8400. [Google Scholar] [CrossRef] [Green Version]
- Timusk, T. Infrared properties of exotic superconductors. Phys. C Supercond. Its Appl. 1999, 317–318, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Fauqué, B.; Sidis, Y.; Hinkov, V.; Pailhès, S.; Lin, C.T.; Chaud, X.; Bourges, P. Magnetic order in the pseudogap phase of high-Tc superconductors. Phys. Rev. Lett. 2006, 96, 197001. [Google Scholar] [CrossRef] [Green Version]
- Mangin-Thro, L.; Li, Y.; Sidis, Y.; Bourges, P. a–b Anisotropy of the Intra-Unit-Cell Magnetic Order in YBa2Cu3O6.6. Phys. Rev. Lett. 2017, 118, 097003. [Google Scholar] [CrossRef] [Green Version]
- Mook, H.A.; Sidis, Y.; Fauqué, B.; Balédent, V.; Bourges, P. Observation of magnetic order in a superconducting YBa2Cu3O6.6 single crystal using polarized neutron scattering. Phys. Rev. B 2008, 78, 020506. [Google Scholar] [CrossRef] [Green Version]
- Balédent, V.; Haug, D.; Sidis, Y.; Hinkov, V.; Lin, C.T.; Bourges, P. Evidence for competing magnetic instabilities in underdoped YBa2Cu3O6+x. Phys. Rev. B 2011, 83, 104504. [Google Scholar] [CrossRef] [Green Version]
- Leridon, B.; Ng, T.K.; Varma, C.M. Josephson Effect for Superconductors Lacking Time-Reversal and Inversion Symmetries. Phys. Rev. Lett. 2007, 99, 027002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balédent, V.; Fauqué, B.; Sidis, Y.; Christensen, N.B.; Pailhès, S.; Conder, K.; Pomjakushina, E.; Mesot, J.; Bourges, P. Two-Dimensional Orbital-Like Magnetic Order in the High-Temperature La2−xSrxCuO4 Superconductor. Phys. Rev. Lett. 2010, 105, 027004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Almeida-Didry, S.; Sidis, Y.; Balédent, V.; Giovannelli, F.; Monot-Laffez, I.; Bourges, P. Evidence for intra-unit-cell magnetic order in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 2012, 86, 020504. [Google Scholar] [CrossRef] [Green Version]
- Mangin-Thro, L.; Sidis, Y.; Bourges, P.; De Almeida-Didry, S.; Giovannelli, F.; Laffez-Monot, I. Characterization of the intra-unit-cell magnetic order in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 2014, 89, 094523. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Balédent, V.; Barišić, N.; Cho, Y.C.; Sidis, Y.; Yu, G.; Zhao, X.; Bourges, P.; Greven, M. Magnetic order in the pseudogap phase of HgBa2CuO4+δ studied by spin-polarized neutron diffraction. Phys. Rev. B 2011, 84, 224508. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Mangin-Thro, L.; Wildes, A.; Chan, M.K.; Dorow, C.J.; Jeong, J.; Sidis, Y.; Greven, M.; Bourges, P. Orientation of the intra-unit-cell magnetic moment in the high-Tc superconductor HgBa2CuO4+δ. Phys. Rev. B 2018, 98, 214418. [Google Scholar] [CrossRef] [Green Version]
- Doiron-Leyraud, N.; Proust, C.; LeBoeuf, D.; Levallois, J.; Bonnemaison, J.B.; Liang, R.; Bonn, D.; Hardy, W.; Taillefer, L. Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor. Nature 2007, 447, 565–568. [Google Scholar] [CrossRef] [Green Version]
- Doiron-Leyraud, N.; Badoux, S.; René de Cotret, S.; Lepault, S.; LeBoeuf, D.; Laliberté, F.; Hassinger, E.; Ramshaw, B.; Bonn, D.; Hardy, W.; et al. Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy. Nat. Commun. 2015, 6, 6034. [Google Scholar] [CrossRef] [Green Version]
- Sebastian, S.E.; Harrison, N.; Balakirev, F.; Altarawneh, M.; Goddard, P.; Liang, R.; Bonn, D.; Hardy, W.; Lonzarich, G. Normal-state nodal electronic structure in underdoped high-Tc copper oxides. Nature 2014, 511, 61–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramshaw, B.; Sebastian, S.; McDonald, R.; Day, J.; Tan, B.; Zhu, Z.; Betts, J.; Liang, R.; Bonn, D.; Hardy, W.; et al. Quasiparticle mass enhancement approaching optimal doping in a high-Tc superconductor. Science 2015, 348, 317–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badoux, S.; Tabis, W.; Laliberté, F.; Grissonnanche, G.; Vignolle, B.; Vignolles, D.; Béard, J.; Bonn, D.; Hardy, W.; Liang, R.; et al. Change of carrier density at the pseudogap critical point of a cuprate superconductor. Nature 2016, 531, 210–214. [Google Scholar] [CrossRef] [Green Version]
- Lorenzana, J.; Yu, L. Optical conductivity of La2−xSrxCuO4 and soft electronic modes. Phys. Rev. Lett. 1993, 70, 861–864. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.H.; Buchholz, M.; Trabant, C.; Chang, C.; Komarek, A.; Heigl, F.; Zimmermann, M.; Cwik, M.; Nakamura, F.; Braden, M.; et al. Charge stripe order near the surface of 12-percent doped La2−xSrxCuO4. Nat. Commun. 2012, 3, 1023. [Google Scholar] [CrossRef] [Green Version]
- Gerber, S.; Jang, H.; Nojiri, H.; Matsuzawa, S.; Yasumura, H.; Bonn, D.A.; Liang, R.; Hardy, W.N.; Islam, Z.; Mehta, A.; et al. Three-dimensional charge density wave order in YBa2Cu3O6.67 at high magnetic fields. Science 2015, 350, 949–952. [Google Scholar] [CrossRef] [Green Version]
- Arpaia, R.; Caprara, S.; Fumagalli, R.; De Vecchi, G.; Peng, Y.; Andersson, E.; Betto, D.; De Luca, G.; Brookes, N.; Lombardi, F.; et al. Dynamical charge density fluctuations pervading the phase diagram of a Cu-based high-Tc superconductor. Science 2019, 365, 906–910. [Google Scholar] [CrossRef] [Green Version]
- Keimer, B.; Kivelson, S.A.; Norman, M.R.; Uchida, S.; Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 2015, 518, 179–186. [Google Scholar] [CrossRef]
- Comin, R.; Damascelli, A. Resonant X-ray Scattering Studies of Charge Order in Cuprates. Annu. Rev. Condens. Matter Phys. 2016, 7, 369–405. [Google Scholar] [CrossRef] [Green Version]
- Miao, H.; Lorenzana, J.; Seibold, G.; Peng, Y.Y.; Amorese, A.; Yakhou-Harris, F.; Kummer, K.; Brookes, N.B.; Konik, R.M.; Thampy, V.; et al. High-temperature charge density wave correlations in La1.875Ba0.125CuO4 without spin–charge locking. Proc. Natl. Acad. Sci. USA 2017, 114, 12430–12435. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.Y.; Dellea, G.; Minola, M.; Conni, M.; Amorese, A.; Di Castro, D.; De Luca, G.M.; Kummer, K.; Salluzzo, M.; Sun, X.; et al. Influence of apical oxygen on the extent of in-plane exchange interaction in cuprate superconductors. Nat. Phys. 2017, 13, 1201–1206. [Google Scholar] [CrossRef] [Green Version]
- Miao, H.; Fumagalli, R.; Rossi, M.; Lorenzana, J.; Seibold, G.; Yakhou-Harris, F.; Kummer, K.; Brookes, N.B.; Gu, G.D.; Braicovich, L.; et al. Formation of Incommensurate Charge Density Waves in Cuprates. Phys. Rev. X 2019, 9, 031042. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Mayaffre, H.; Krämer, S.; Horvatić, M.; Berthier, C.; Hardy, W.; Liang, R.; Bonn, D.; Julien, M.H. Incipient charge order observed by NMR in the normal state of YBa2Cu3Oy. Nat. Commun. 2015, 6, 6438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachdev, S.; Chowdhury, D. The novel metallic states of the cuprates: Topological Fermi liquids and strange metals. Prog. Theor. Exp. Phys. 2016, 2016, 12C102. [Google Scholar] [CrossRef] [Green Version]
- Varma, C.M. Pseudogap Phase and the Quantum-Critical Point in Copper-Oxide Metals. Phys. Rev. Lett. 1999, 83, 3538–3541. [Google Scholar] [CrossRef] [Green Version]
- Varma, C.M. Theory of the pseudogap state of the cuprates. Phys. Rev. B 2006, 73, 155113. [Google Scholar] [CrossRef] [Green Version]
- Zaanen, J.; Gunnarsson, O. Charged magnetic domain lines and the magnetism of high-Tc oxides. Phys. Rev. B 1989, 40, 7391–7394. [Google Scholar] [CrossRef] [Green Version]
- Castellani, C.; Castro, C.D.; Grilli, M. Singular quasiparticle scattering in the proximity of charge instabilities. Phys. Rev. Lett. 1995, 75, 4650. [Google Scholar] [CrossRef] [Green Version]
- Lorenzana, J.; Castellani, C.; Di Castro, C. Curie temperature and frustrated phase separation in manganites. Phys. B Condens. Matter 2002, 320, 56–59. [Google Scholar] [CrossRef]
- Castellani, C.; Di Castro, C.; Grilli, M. Non-Fermi-liquid behavior and d-wave superconductivity near the charge-density-wave quantum critical point. Z. Phys. B Condens. Matter 1996, 103, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Kivelson, S.A.; Bindloss, I.P.; Fradkin, E.; Oganesyan, V.; Tranquada, J.M.; Kapitulnik, A.; Howald, C. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 2003, 75, 1201–1241. [Google Scholar] [CrossRef] [Green Version]
- Caprara, S.; Di Castro, C.; Seibold, G.; Grilli, M. Dynamical charge density waves rule the phase diagram of cuprates. Phys. Rev. B 2017, 95, 224511. [Google Scholar] [CrossRef] [Green Version]
- Grissonnanche, G.; Cyr-Choinière, O.; Laliberté, F.; René de Cotret, S.; Juneau-Fecteau, A.; Dufour-Beauséjour, S.; Delage, M.E.; LeBoeuf, D.; Chang, J.; Ramshaw, B.; et al. Direct measurement of the upper critical field in cuprate superconductors. Nat. Commun. 2014, 5, 3280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caprara, S.; Grilli, M.; Lorenzana, J.; Leridon, B. Doping-dependent competition between superconductivity and polycrystalline charge density waves. SciPost Phys. 2020, 8, 003. [Google Scholar] [CrossRef]
- Abanov, A.; Chubukov, A.V.; Schmalian, J. Quantum-critical theory of the spin-fermion model and its application to cuprates: Normal state analysis. Adv. Phys. 2003, 52, 119–218. [Google Scholar] [CrossRef]
- Leridon, B.; Vanacken, J.; Wambecq, T.; Moshchalkov, V.V. Paraconductivity of underdoped La2−xSrxCuO4 thin-film superconductors using high magnetic fields. Phys. Rev. B 2007, 76, 012503. [Google Scholar] [CrossRef] [Green Version]
- Bergeal, N.; Lesueur, J.; Aprili, M.; Faini, G.; Contour, J.; Leridon, B. Pairing fluctuations in the pseudogap state of copper-oxide superconductors probed by the Josephson effect. Nat. Phys. 2008, 4, 608–611. [Google Scholar] [CrossRef] [Green Version]
- Caprara, S.; Di Castro, C.; Grilli, M.; Suppa, D. Charge-fluctuation contribution to the raman response in superconducting cuprates. Phys. Rev. Lett. 2005, 95, 9–12. [Google Scholar] [CrossRef]
- Caprara, S.; Grilli, M.; Leridon, B.; Vanacken, J. Paraconductivity in layered cuprates behaves as if due to pairing of nearly free quasiparticles. Phys. Rev. B 2009, 79, 024506. [Google Scholar] [CrossRef]
- Leridon, B.; Caprara, S.; Vanacken, J.; Moshchalkov, V.; Vignolle, B.; Porwal, R.; Budhani, R.; Attanasi, A.; Grilli, M.; Lorenzana, J. Protected superconductivity at the boundaries of charge-density-wave domains. New J. Phys. 2020, 22, 073025. [Google Scholar] [CrossRef]
- Laliberté, F.; Tabis, W.; Badoux, S.; Vignolle, B.; Destraz, D.; Momono, N.; Kurosawa, T.; Yamada, K.; Takagi, H.; Doiron-Leyraud, N.; et al. Origin of the metal-to-insulator crossover in cuprate superconductors. arXiv 2016, arXiv:1606.04491. [Google Scholar]
- Campi, G.; Bianconi, A.; Poccia, N.; Bianconi, G.; Barba, L.; Arrighetti, G.; Innocenti, D.; Karpinski, J.; Zhigadlo, N.D.; Kazakov, S.M.; et al. Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor. Nature 2015, 525, 359–362. [Google Scholar] [CrossRef] [Green Version]
- Perali, A.; Castellani, C.; Di Castro, C.; Grilli, M. d-wave superconductivity near charge instabilities. Phys. Rev. B 1996, 54, 16216–16225. [Google Scholar] [CrossRef] [Green Version]
- Pfleiderer, C. Superconducting phases of f-electron compounds. Rev. Mod. Phys. 2009, 81, 1551–1624. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Lin, P.V.; Sasagawa, T.; Dobrosavljević, V.; Popović, D. Two-stage magnetic-field-tuned superconductor–insulator transition in underdoped La2−xSrxCuO4. Nat. Phys. 2014, 10, 437–443. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Hirata, M.; Wu, T.; Vinograd, I.; Mayaffre, H.; Krämer, S.; Reyes, A.P.; Kuhns, P.L.; Liang, R.; Hardy, W.; et al. Spin susceptibility of charge-ordered YBa2Cu3Oy across the upper critical field. Proc. Natl. Acad. Sci. USA 2017, 114, 13148–13153. [Google Scholar] [CrossRef] [Green Version]
- Kačmarčík, J.; Vinograd, I.; Michon, B.; Rydh, A.; Demuer, A.; Zhou, R.; Mayaffre, H.; Liang, R.; Hardy, W.N.; Bonn, D.A.; et al. Unusual Interplay between Superconductivity and Field-Induced Charge Order in YBa2Cu3Oy. Phys. Rev. Lett. 2018, 121, 167002. [Google Scholar] [CrossRef] [Green Version]
- Arpaia, R.; Ghiringhelli, G. Charge order at high temperature in cuprate superconductors. J. Phys. Soc. Jpn. 2021, 90, 111005. [Google Scholar] [CrossRef]
- Chen, C.; Cheong, S.; Werder, D.; Cooper, A.; Rupp, L., Jr. Low temperature microstructure and phase transitions in La2−xSrxCuO4 and La2−xBaxCuO4. Phys. C Supercond. 1991, 175, 301–309. [Google Scholar] [CrossRef]
- Tidey, J.P.; Liu, E.P.; Lai, Y.C.; Chuang, Y.C.; Chen, W.T.; Cane, L.J.; Lester, C.; Petsch, A.N.; Herlihy, A.; Simonov, A.; et al. Pronounced interplay between intrinsic phase-coexistence and octahedral tilt magnitude in hole-doped lanthanum cuprates. Sci. Rep. 2022, 12, 14343. [Google Scholar] [CrossRef]
- Imry, Y. On the statistical mechanics of coupled order parameters. J. Phys. C Solid State Phys. 1975, 8, 567. [Google Scholar] [CrossRef]
- Lee, S.; Collini, J.; Sun, S.X.L.; Mitrano, M.; Guo, X.; Eckberg, C.; Paglione, J.; Fradkin, E.; Abbamonte, P. Multiple Charge Density Waves and Superconductivity Nucleation at Antiphase Domain Walls in the Nematic Pnictide Ba1−xSrxNi2As2. Phys. Rev. Lett. 2021, 127, 027602. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Terzic, J.; Baity, P.; Popović, D.; Gu, G.; Li, Q.; Tsvelik, A.; Tranquada, J.M. Tuning from failed superconductor to failed insulator with magnetic field. Sci. Adv. 2019, 5, eaav7686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venditti, G.; Maccari, I.; Lorenzana, J.; Caprara, S. Thermodynamic phase diagram of the competition between superconductivity and charge order in cuprates. In preparation.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venditti, G.; Caprara, S. Charge-Density Waves vs. Superconductivity: Some Results and Future Perspectives. Condens. Matter 2023, 8, 54. https://doi.org/10.3390/condmat8030054
Venditti G, Caprara S. Charge-Density Waves vs. Superconductivity: Some Results and Future Perspectives. Condensed Matter. 2023; 8(3):54. https://doi.org/10.3390/condmat8030054
Chicago/Turabian StyleVenditti, Giulia, and Sergio Caprara. 2023. "Charge-Density Waves vs. Superconductivity: Some Results and Future Perspectives" Condensed Matter 8, no. 3: 54. https://doi.org/10.3390/condmat8030054
APA StyleVenditti, G., & Caprara, S. (2023). Charge-Density Waves vs. Superconductivity: Some Results and Future Perspectives. Condensed Matter, 8(3), 54. https://doi.org/10.3390/condmat8030054