Tunable Photonic Band Gaps in Two-Dimensional Bravais–Moiré Photonic Crystal Composed of High-Tc Superconductors
Abstract
1. Introduction
2. Description of the System
2.1. Theoretical Framework
2.2. Simulation Settings
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, C.-L.; Zhang, H.-F.; Chen, Y.-Q. Enlarged the omnidirectional Bragg gap by one-dimensional superconductor-dielectric photonic crystals with ternary Thue-Morse aperiodic structure. Optik 2013, 124, 5811. [Google Scholar] [CrossRef]
- Rahimi, H. Analysis of photonic spectra in Thue–Morse, Double-Period and Rudin-Shapiro quasirregular structures made of high temperature superconductors in visible range. Opt. Mater. 2016, 57, 264. [Google Scholar] [CrossRef]
- Gómez-Urrea, H.A.; Escorcia-García, J.; Duque, C.A.; Mora-Ramos, M.E. Analysis of light propagation in quasiregular and hybrid Rudin–Shapiro one-dimensional photonic crystals with superconducting layers. Photonics Nanostruct. 2017, 1, 1–10. [Google Scholar] [CrossRef]
- Trabelsi, Y. Output multichannel optical filter based on hybrid photonic quasicrystals containing a high-Tc superconductor. Photonics Nanostruct. 2019, 100, 724. [Google Scholar] [CrossRef]
- Raymond Ooi, C.H.; Au Yeung, T.C.; Lim, T.-K.; Kam, C.H. Two-dimensional superconductor-dielectric photonic crystal. Proc. SPIE 1999, 3899, 278. [Google Scholar] [CrossRef]
- Chen, Y.-B.; Zhang, C.; Zhu, Y.-Y.; Zhu, S.-N.; Ming, N.-B. Tunable photonic crystals with superconductor constituents. Mater. Lett. 2002, 55, 12. [Google Scholar] [CrossRef]
- Takeda, H.; Yoshino, K. Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors. Phys. Rev. B 2003, 67, 245109. [Google Scholar] [CrossRef]
- Cheng, C.; Xu, C.; Zhou, T.; Zhang, X.-F.; Xu, Y. Temperature dependent complex photonic band structures in two-dimensional photonic crystals composed of high-temperature superconductors. J. Phys. Condens. Matter 2008, 20, 275203. [Google Scholar] [CrossRef]
- Berman, O.L.; Boyko, V.S.; Kezerashvili, R.Y.; Lozovik, Y.E. Monochromatic infrared wave propagation in 2D superconductor-dielectric photonic crystal. Laser Phys. 2009, 19, 2035–2040. [Google Scholar] [CrossRef]
- Barvestani, J.; Rezaei, E.; Soltani Vala, A. Tunability of waveguide modes in two-dimensional photonic crystals based on superconducting materials. Opt. Commun. 2013, 297, 74. [Google Scholar] [CrossRef]
- El-Naggar, S.A.; Elsayed, H.A.; Aly, A.H. Maximization of Photonic Bandgaps in Two-Dimensional Superconductor Photonic Crystals. J. Supercond. Nov. Magn. 2014, 27, 1615. [Google Scholar] [CrossRef]
- Hashemi, R.; Barvestani, J. Superconducting Point Defect in a Two-Dimensional Photonic Crystal. J. Supercond. Nov. Magn. 2014, 27, 371. [Google Scholar] [CrossRef]
- Liu, W.-G.; Pan, F.-M.; Cai, L.-W. Photonic band gap of superconductor-medium structure: Two-dimensional triangular lattice. Phys. C 2014, 500, 4. [Google Scholar] [CrossRef]
- Aly, A.H.; Elsayed, H.A.; El-Naggar, S.A. The properties of cutoff frequency in two-dimensional superconductor photonic crystals. J. Mod. Opt. 2014, 61, 1064. [Google Scholar] [CrossRef]
- Diaz-Valencia, B.F.; Calero, J.M. Photonic band gaps of a two-dimensional square lattice composed by superconducting hollow rods. Phys. C 2014, 505, 74. [Google Scholar] [CrossRef]
- Zhang, H.F.; Liu, S. The Tunable Omnidirectional Reflector Based on Two-Dimensional Photonic Crystals With Superconductor Constituents. IEEE J. Sel. Top. Quantum Electron. 2015, 21. [Google Scholar] [CrossRef]
- Diaz-Valencia, B.F.; Calero, J.M. Analysis of Photonic Band Gaps in a Two-Dimensional Triangular Lattice with Superconducting Hollow Rods. J. Low Temp. Phys. 2017, 186, 275. [Google Scholar] [CrossRef]
- Zhang, H.-F. The Mie resonance and dispersion properties in the two-dimensional superconductor photonic crystals with fractal structure. Phys. C 2018, 550, 65. [Google Scholar] [CrossRef]
- Elsayed, H.A. Photonic band gaps properties of two-dimensional ternary superconductor photonic crystals. Surf. Rev. Lett. 2019, 26, 1850152. [Google Scholar] [CrossRef]
- Hao, J.J.; Ju, L.; Liu, Y.J.; Du, W.-C.; Gu, K.-D.; Yang, H.-W. Research on Transmission Characteristics of Two-Dimensional Superconducting Photonic Crystal in THz-Waves. Plasmonics 2020, 15, 1083. [Google Scholar] [CrossRef]
- Fan, S.; Villeneuve, P.R.; Joannopoulos, J.D. Large omnidirectional band gaps in metallodielectric photonic crystals. Phys. Rev. B 1996, 54, 11245. [Google Scholar] [CrossRef] [PubMed]
- Halevi, P.; Ramos-Mendieta, F. Tunable Photonic Crystals with Semiconducting Constituents. Phys. Rev. Lett. 2000, 85, 1875. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Coupled-resonator optical waveguides in photonic crystals with Archimedean-like tilings. Europhys. Lett. 2006, 74, 261. [Google Scholar] [CrossRef]
- Iliew, R.; Etrich, C.; Pertsch, T.; Lederer, F. Slow-light enhanced collinear second-harmonic generation in two dimensional photonic crystals. Phys. Rev. B 2008, 77, 115124. [Google Scholar] [CrossRef]
- Olivier, S.; Smith, C.; Rattier, M.; Benisty, H.; Weisbuch, C.; Krauss, T.; Houdre, R.; Oesterle, U. Miniband transmission in a photonic crystal coupled-resonator optical waveguide. Opt. Lett. 2001, 26, 1019. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Urrea, H.A.; Cardona, J.G.; Caro-Lopera, F.J.; Mora-Ramos, M.E. Photonic band gaps and waveguide slow-light propagation in Bravais–Moiré two-dimensional photonic crystals. J. Opt. 2023, 25, 025101. [Google Scholar] [CrossRef]
- David, S.; Chelnokov, A.; Lourtioz, J. Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilings. Opt. Lett. 2000, 25, 1001. [Google Scholar] [CrossRef]
- Ueda, K.; Dotera, T.; Gemma, T. Photonic band structure calculations of two- dimensional Archimedean tiling patterns. Phys. Rev. B 2007, 75, 195122. [Google Scholar] [CrossRef]
- Jovanović, Đ.; Gajić, R.; Hingerl, K. Refraction and band isotropy in 2D square-like Archimedean photonic crystal lattices. Opt. Express 2008, 16, 4048. [Google Scholar] [CrossRef]
- Balci, S.; Karabiyik, M.; Kocabas, A.; Kocabas, C.; Aydinli, A. Coupled plasmonic cavities on Moiré surfaces. Plasmonics 2010, 5, 429. [Google Scholar] [CrossRef]
- Balci, S.; Kocabas, A.; Kocabas, C.; Aydinli, A. Localization of surface plasmon polaritons in hexagonal arrays of Moiré cavities. Appl. Phys. Lett. 2011, 98, 031101. [Google Scholar] [CrossRef]
- Lubin, S.M.; Hryn, A.J.; Huntington, M.D.; Engel, C.J.; Odom, T.W. Quasiperiodic Moiré plasmonic crystals. ACS Nano 2013, 7, 11035. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Urrea, H.A.; Bareño-Silva, J.; Caro-Lopera, F.J.; Mora-Ramos, M.E. The influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices. Photonics Nanostruct. 2020, 42, 100845. [Google Scholar] [CrossRef]
- Gómez-Urrea, H.A.; Ospina-Medina, M.C.; Correa-Abad, J.D.; Mora-Ramos, M.E.; Caro-Lopera, F.J. Tunable band structure in 2D Bravais-Moiré photonic crystal lattices. Opt. Commun. 2020, 459, 125081. [Google Scholar] [CrossRef]
- Nasidi, I.; Hao, R.; Chen, J.; Li, E.; Jin, S. Photonic Moiré lattice waveguide with a large slow light bandwidth and delay-bandwidth product. Appl. Opt. 2022, 61, 5776. [Google Scholar] [CrossRef] [PubMed]
- Nasidi, I.; Hao, R.; Jin, S.; Li, E. Flat bands and quasi-bound states in the continuum in a photonic Moiré lattice. J. Opt. Soc. Am. B 2022, 40, 260. [Google Scholar] [CrossRef]
- Nasidi, I.; Hao, R.; Jin, S.; Li, E. Inverse design of a photonic Moiré lattice waveguide towards improved slow light performances. Appl. Opt. 2023, 62, 2651. [Google Scholar] [CrossRef]
- Lou, B.; Zhao, N.; Minkov, M.; Guo, C.; Orenstein, M.; Fan, S. Theory for Twisted Bilayer Photonic Crystal Slabs. Phys. Rev. Lett. 2021, 126, 136101. [Google Scholar] [CrossRef]
- Dong, K.; Zhang, T.; Li, J.; Wang, Q.; Yang, F.; Rho, Y. Flat Bands in Magic-Angle Bilayer Photonic Crystals at Small Twists. Phys. Rev. Lett. 2021, 126, 223601. [Google Scholar] [CrossRef]
- John SG, J.; Joannopoulos, D.; Winn, J.N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light, 2nd ed.; Princeton University of Press: Princeton, NJ, USA, 2008. [Google Scholar]
- COMSOL. Multiphysics, v. 5.6; COMSOL AB: Stockholm, Sweden, 2021. [Google Scholar]
- COMSOL. Multiphysics Reference Guide; COMSOL: Stockholm, Sweden, 2012. [Google Scholar]
- COMSOL. Multiphysics Users Guide; COMSOL: Stockholm, Sweden, 2012. [Google Scholar]
- Norman, M.R.; Chubukov, A.V. High-frequency behavior of the infrared conductivity of cuprates. Phys. Rev. B 2006, 73, 140501. [Google Scholar] [CrossRef]
- Lee, W.M.; Hui, P.M.; Stroud, D. Propagating photonic modes below the gap in a superconducting composite. Phys. Rev. B 1995, 51, 8634. [Google Scholar] [CrossRef] [PubMed]
System | (mm) | (mm) | | The Mid-Gap Frequency of PBG | PBG Width | Gap Mid-Gap Ratio | PBG Percentatge (%) |
---|---|---|---|---|---|---|---|
1 | 2.01–2.26 | 2.14 | 0.25 | 0.1168 | 11.68 | ||
2 | 1.68–2.07 | 1.875 | 0.39 | 0.208 | 20.8 | ||
3 | 1.83–2.09 | 1.96 | 0.26 | 0.132 | 13.2 |
T (K) | Mode | Max |
---|---|---|
15 | 0.0069 | |
45 | 0.0063 | |
75 | 0.0058 | |
107 | 0.0054 |
T (K) | Mode | Max |
---|---|---|
15 | 0.0092 | |
15 | 0.0058 | |
45 | 0.0096 | |
45 | 0.0043 | |
75 | 0.0098 | |
75 | 0.0027 | |
107 | 0.0098 | |
107 | 0.0013 |
T (K) | Mode | Max |
---|---|---|
15 | 0.0668 | |
15 | 0.0733 | |
45 | 0.0628 | |
45 | 0.0643 | |
75 | 0.0579 | |
75 | 0.0571 | |
107 | 0.0321 | |
107 | 0.0242 |
T (K) | Mode | Max |
---|---|---|
15 | 0.0248 | |
15 | 0.0686 | |
45 | 0.0167 | |
45 | 0.0842 | |
75 | 0.0150 | |
75 | 0.0917 | |
107 | 0.0094 | |
107 | 0.0958 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Urrea, H.A.; Cardona, J.G.; Mora-Ramos, M.E.; Duque, C.A. Tunable Photonic Band Gaps in Two-Dimensional Bravais–Moiré Photonic Crystal Composed of High-Tc Superconductors. Condens. Matter 2023, 8, 51. https://doi.org/10.3390/condmat8020051
Gómez-Urrea HA, Cardona JG, Mora-Ramos ME, Duque CA. Tunable Photonic Band Gaps in Two-Dimensional Bravais–Moiré Photonic Crystal Composed of High-Tc Superconductors. Condensed Matter. 2023; 8(2):51. https://doi.org/10.3390/condmat8020051
Chicago/Turabian StyleGómez-Urrea, Hernán A., José G. Cardona, Miguel E. Mora-Ramos, and Carlos A. Duque. 2023. "Tunable Photonic Band Gaps in Two-Dimensional Bravais–Moiré Photonic Crystal Composed of High-Tc Superconductors" Condensed Matter 8, no. 2: 51. https://doi.org/10.3390/condmat8020051
APA StyleGómez-Urrea, H. A., Cardona, J. G., Mora-Ramos, M. E., & Duque, C. A. (2023). Tunable Photonic Band Gaps in Two-Dimensional Bravais–Moiré Photonic Crystal Composed of High-Tc Superconductors. Condensed Matter, 8(2), 51. https://doi.org/10.3390/condmat8020051