Quantum Reservoir Computing for Speckle Disorder Potentials
Abstract
:1. Introduction
2. Database of Speckle Disorder Potentials and Ground State Energies
3. Input Ecoding into the Quantum Reservoir
4. Hamiltonian of the Reservoir of Spins
5. Quantum Reservoir Computer Operation
6. Training and Predictions of the Models
7. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
QRC | Quantum Reservoir Computing |
RC | Reservoir Computing |
MAE | Mean Absolute Error |
References
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef]
- Dunjko, V.; Briegel, H.J. Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Rep. Prog. Phys. 2018, 81, 074001. [Google Scholar] [CrossRef] [Green Version]
- Carrasquilla, J. Machine learning for quantum matter. Adv. Phys. X 2020, 5, 1797528. [Google Scholar] [CrossRef]
- Schuld, M.; Sinayskiy, I.; Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 2015, 56, 172–185. [Google Scholar] [CrossRef] [Green Version]
- Carleo, G.; Cirac, I.; Cranmer, K.; Daudet, L.; Schuld, M.; Tishby, N.; Vogt-Maranto, L.; Zdeborová, L. Machine learning and the physical sciences. Rev. Mod. Phys. 2019, 91, 045002. [Google Scholar] [CrossRef] [Green Version]
- Kottmann, K.; Huembeli, P.; Lewenstein, M.; Acín, A. Unsupervised Phase Discovery with Deep Anomaly Detection. Phys. Rev. Lett. 2020, 125, 170603. [Google Scholar] [CrossRef]
- Dong, X.Y.; Pollmann, F.; Zhang, X.F. Machine learning of quantum phase transitions. Phys. Rev. B 2019, 99, 121104. [Google Scholar] [CrossRef] [Green Version]
- Carrasquilla, J.; Melko, R.G. Machine learning phases of matter. Nat. Phys. 2017, 13, 431–434. [Google Scholar] [CrossRef] [Green Version]
- Wang, L. Discovering phase transitions with unsupervised learning. Phys. Rev. B 2016, 94, 195105. [Google Scholar] [CrossRef] [Green Version]
- Rem, B.S.; Käming, N.; Tarnowski, M.; Asteria, L.; Fläschner, N.; Becker, C.; Sengstock, K.; Weitenberg, C. Identifying quantum phase transitions using artificial neural networks on experimental data. Nat. Phys. 2019, 15, 917–920. [Google Scholar] [CrossRef]
- Huembeli, P.; Dauphin, A.; Wittek, P. Identifying quantum phase transitions with adversarial neural networks. Phys. Rev. B 2018, 97, 134109. [Google Scholar] [CrossRef] [Green Version]
- Canabarro, A.; Fanchini, F.F.; Malvezzi, A.L.; Pereira, R.; Chaves, R. Unveiling phase transitions with machine learning. Phys. Rev. B 2019, 100, 045129. [Google Scholar] [CrossRef] [Green Version]
- Schindler, F.; Regnault, N.; Neupert, T. Probing many-body localization with neural networks. Phys. Rev. B 2017, 95, 245134. [Google Scholar] [CrossRef] [Green Version]
- Mills, K.; Spanner, M.; Tamblyn, I. Deep learning and the Schrödinger equation. Phys. Rev. A 2017, 96, 042113. [Google Scholar] [CrossRef] [Green Version]
- Pilati, S.; Pieri, P. Simulating disordered quantum Ising chains via dense and sparse restricted Boltzmann machines. Phys. Rev. E 2020, 101, 063308. [Google Scholar] [CrossRef]
- Pilati, S.; Pieri, P. Supervised machine learning of ultracold atoms with speckle disorder. Sci. Rep. 2019, 9, 5613. [Google Scholar] [CrossRef] [Green Version]
- Mujal, P.; Martínez Miguel, A.; Polls, A.; Juliá-Díaz, B.; Pilati, S. Supervised learning of few dirty bosons with variable particle number. SciPost Phys. 2021, 10, 73. [Google Scholar] [CrossRef]
- Wigley, P.B.; Everitt, P.J.; van den Hengel, A.; Bastian, J.W.; Sooriyabandara, M.A.; McDonald, G.D.; Hardman, K.S.; Quinlivan, C.D.; Manju, P.; Kuhn, C.C.N.; et al. Fast machine-learning online optimization of ultra-cold-atom experiments. Sci. Rep. 2016, 6, 25890. [Google Scholar] [CrossRef] [Green Version]
- Tranter, A.D.; Slatyer, H.J.; Hush, M.R.; Leung, A.C.; Everett, J.L.; Paul, K.V.; Vernaz-Gris, P.; Lam, P.K.; Buchler, B.C.; Campbell, G.T. Multiparameter optimisation of a magneto-optical trap using deep learning. Nat. Commun. 2018, 9, 4360. [Google Scholar] [CrossRef]
- Barker, A.J.; Style, H.; Luksch, K.; Sunami, S.; Garrick, D.; Hill, F.; Foot, C.J.; Bentine, E. Applying machine learning optimization methods to the production of a quantum gas. Mach. Learn. Sci. Technol. 2020, 1, 015007. [Google Scholar] [CrossRef]
- Flurin, E.; Martin, L.S.; Hacohen-Gourgy, S.; Siddiqi, I. Using a Recurrent Neural Network to Reconstruct Quantum Dynamics of a Superconducting Qubit from Physical Observations. Phys. Rev. X 2020, 10, 011006. [Google Scholar] [CrossRef] [Green Version]
- Mujal, P.; Martínez-Peña, R.; Nokkala, J.; García-Beni, J.; Giorgi, G.L.; Soriano, M.C.; Zambrini, R. Opportunities in Quantum Reservoir Computing and Extreme Learning Machines. Adv. Quantum Technol. 2021, 2100027. [Google Scholar] [CrossRef]
- Ghosh, S.; Nakajima, K.; Krisnanda, T.; Fujii, K.; Liew, T.C.H. Quantum Neuromorphic Computing with Reservoir Computing Networks. Adv. Quantum Technol. 2021, 4, 2100053. [Google Scholar] [CrossRef]
- Fujii, K.; Nakajima, K. Harnessing Disordered-Ensemble Quantum Dynamics for Machine Learning. Phys. Rev. Appl. 2017, 8, 024030. [Google Scholar] [CrossRef] [Green Version]
- Lukoševičius, M.; Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 2009, 3, 127–149. [Google Scholar] [CrossRef]
- Jaeger, H.; Haas, H. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication. Science 2004, 304, 78–80. [Google Scholar] [CrossRef] [Green Version]
- Maass, W.; Markram, H. On the computational power of circuits of spiking neurons. J. Comput. Syst. Sci. 2004, 69, 593–616. [Google Scholar] [CrossRef] [Green Version]
- Brunner, D.; Soriano, M.C.; Van der Sande, G. Photonic Reservoir Computing: Optical Recurrent Neural Networks; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2019. [Google Scholar]
- Konkoli, Z. On reservoir computing: From mathematical foundations to unconventional applications. In Advances in Unconventional Computing; Springer: Heidelberg, Germany, 2017; pp. 573–607. [Google Scholar]
- Adamatzky, A.; Bull, L.; De Lacy Costello, B.; Stepney, S.; Teuscher, C. Unconventional Computing 2007; Luniver Press: London, UK, 2007. [Google Scholar]
- Butcher, J.B.; Verstraeten, D.; Schrauwen, B.; Day, C.R.; Haycock, P.W. Reservoir computing and extreme learning machines for non-linear time-series data analysis. Neural Netw. 2013, 38, 76–89. [Google Scholar] [CrossRef]
- Lukoševičius, M. A practical guide to applying echo state networks. In Neural Networks: Tricks of the Trade; Springer: Heidelberg, Germany, 2012; pp. 659–686. [Google Scholar]
- Antonik, P.; Marsal, N.; Brunner, D.; Rontani, D. Human action recognition with a large-scale brain-inspired photonic computer. Nat. Mach. Intell. 2019, 1, 530–537. [Google Scholar] [CrossRef] [Green Version]
- Alfaras, M.; Soriano, M.C.; Ortín, S. A Fast Machine Learning Model for ECG-Based Heartbeat Classification and Arrhythmia Detection. Front. Phys. 2019, 7, 103. [Google Scholar] [CrossRef] [Green Version]
- Pathak, J.; Hunt, B.; Girvan, M.; Lu, Z.; Ott, E. Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach. Phys. Rev. Lett. 2018, 120, 024102. [Google Scholar] [CrossRef] [Green Version]
- Schuld, M.; Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 2019, 122, 040504. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.; Sutter, D.; Zoufal, C.; Lucchi, A.; Figalli, A.; Woerner, S. The power of quantum neural networks. Nat. Comput. Sci. 2021, 1, 403–409. [Google Scholar] [CrossRef]
- Nokkala, J.; Martínez-Peña, R.; Zambrini, R.; Soriano, M.C. High-Performance Reservoir Computing with Fluctuations in Linear Networks. IEEE Trans. Neural Netw. Learn. Syst. 2021. [Google Scholar] [CrossRef]
- Martínez-Peña, R.; Nokkala, J.; Giorgi, G.L.; Zambrini, R.; Soriano, M.C. Information Processing Capacity of Spin-Based Quantum Reservoir Computing Systems. Cognit. Comput. 2020, 1–12. [Google Scholar] [CrossRef]
- Ghosh, S.; Opala, A.; Matuszewski, M.; Paterek, T.; Liew, T.C.H. Quantum reservoir processing. NPJ Quantum Inf. 2019, 5, 35. [Google Scholar] [CrossRef]
- Ghosh, S.; Opala, A.; Matuszewski, M.; Paterek, T.; Liew, T.C.H. Reconstructing Quantum States with Quantum Reservoir Networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 1–8. [Google Scholar] [CrossRef]
- Ghosh, S.; Paterek, T.; Liew, T.C.H. Quantum Neuromorphic Platform for Quantum State Preparation. Phys. Rev. Lett. 2019, 123, 260404. [Google Scholar] [CrossRef] [Green Version]
- Krisnanda, T.; Ghosh, S.; Paterek, T.; Liew, T.C. Creating and concentrating quantum resource states in noisy environments using a quantum neural network. Neural Netw. 2021, 136, 141–151. [Google Scholar] [CrossRef]
- Aspect, A.; Inguscio, M. Anderson localization of ultracold atoms. Phys. Today 2009, 62, 30–35. [Google Scholar] [CrossRef]
- Anderson, P.W. Absence of Diffusion in Certain Random Lattices. Phys. Rev. 1958, 109, 1492–1505. [Google Scholar] [CrossRef]
- Clément, D.; Varón, A.F.; Retter, J.A.; Sanchez-Palencia, L.; Aspect, A.; Bouyer, P. Experimental study of the transport of coherent interacting matter-waves in a 1D random potential induced by laser speckle. New J. Phys. 2006, 8, 165. [Google Scholar] [CrossRef]
- Billy, J.; Josse, V.; Zuo, Z.; Bernard, A.; Hambrecht, B.; Lugan, P.; Clément, D.; Sanchez-Palencia, L.; Bouyer, P.; Aspect, A. Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 2008, 453, 891–894. [Google Scholar] [CrossRef]
- Roati, G.; D’Errico, C.; Fallani, L.; Fattori, M.; Fort, C.; Zaccanti, M.; Modugno, G.; Modugno, M.; Inguscio, M. Anderson localization of a non-interacting Bose–Einstein condensate. Nature 2008, 453, 895–898. [Google Scholar] [CrossRef] [Green Version]
- Modugno, M. Collective dynamics and expansion of a Bose–Einstein condensate in a random potential. Phys. Rev. A 2006, 73, 013606. [Google Scholar] [CrossRef] [Green Version]
- Huntley, J. Speckle photography fringe analysis: Assessment of current algorithms. Appl. Opt. 1989, 28, 4316–4322. [Google Scholar] [CrossRef]
- Mujal, P.; Polls, A.; Pilati, S.; Juliá-Díaz, B. Few-boson localization in a continuum with speckle disorder. Phys. Rev. A 2019, 100, 013603. [Google Scholar] [CrossRef] [Green Version]
- Mujal, P.; Martínez Miguel, A.; Polls, A.; Juliá-Díaz, B.; Pilati, S. Database used for the supervised learning of few dirty bosons with variable particle number. Zenodo 2020. [Google Scholar] [CrossRef]
- Mujal, P. Interacting Ultracold Few-Boson Systems. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2019. Available online: http://brunojulia.fqa.ub.edu/works/PMT_phD_Thesis_book.pdf (accessed on 30 January 2022).
- Martínez-Peña, R.; Giorgi, G.L.; Nokkala, J.; Soriano, M.C.; Zambrini, R. Dynamical Phase Transitions in Quantum Reservoir Computing. Phys. Rev. Lett. 2021, 127, 100502. [Google Scholar] [CrossRef]
- Kutvonen, A.; Fujii, K.; Sagawa, T. Optimizing a quantum reservoir computer for time series prediction. Sci. Rep. 2020, 10, 14687. [Google Scholar] [CrossRef]
- Chen, J.; Nurdin, H.I. Learning nonlinear input–output maps with dissipative quantum systems. Quantum Inf. Process. 2019, 18, 198. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, K.; Fujii, K.; Negoro, M.; Mitarai, K.; Kitagawa, M. Boosting Computational Power through Spatial Multiplexing in Quantum Reservoir Computing. Phys. Rev. Appl. 2019, 11, 034021. [Google Scholar] [CrossRef] [Green Version]
- Mujal, P.; Nokkala, J.; Martínez-Peña, R.; Giorgi, G.L.; Soriano, M.C.; Zambrini, R. Analytical evidence of nonlinearity in qubits and continuous-variable quantum reservoir computing. J. Phys. Complex. 2021, 2, 045008. [Google Scholar] [CrossRef]
- Tran, Q.H.; Nakajima, K. Higher-Order Quantum Reservoir Computing. arXiv 2020, arXiv:2006.08999. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mujal, P. Quantum Reservoir Computing for Speckle Disorder Potentials. Condens. Matter 2022, 7, 17. https://doi.org/10.3390/condmat7010017
Mujal P. Quantum Reservoir Computing for Speckle Disorder Potentials. Condensed Matter. 2022; 7(1):17. https://doi.org/10.3390/condmat7010017
Chicago/Turabian StyleMujal, Pere. 2022. "Quantum Reservoir Computing for Speckle Disorder Potentials" Condensed Matter 7, no. 1: 17. https://doi.org/10.3390/condmat7010017
APA StyleMujal, P. (2022). Quantum Reservoir Computing for Speckle Disorder Potentials. Condensed Matter, 7(1), 17. https://doi.org/10.3390/condmat7010017