Plausible Physical Mechanisms for Unusual Volatile/Non- Volatile Resistive Switching in HfO2-Based Stacks
Abstract
:1. Introduction
Preceding Research
- forming-free. The electrical response of the devices does not rely on a previous step to enable the switching [5]. Upon cycling, devices behave the same as if they were pristine.
- rectifying behaviour. Due to the coupling of two bipolar units, the overall response can be thought as a connection of two oppositely connected diodes [5].
- self-limiting switching. No external control is required to limit the runaway of the current during the SET [5].
- high ratio current switching. 5 orders of magnitude can be observed between the two sets of HRS and LRS for positive and negative polarity [5].
- low currents for all the available states. Even at the two LRS: I @ + 2 V = 2 × 10 A,I @ + 2 V = 10 A, I @ − 2 V = 3 × 10A, I @ − 2 V = 7 × 10A [5].
- coexistence of volatile and non-volatile modes. The retentivity of the states depends upon the width of and the separation in between the voltage pulses [5].
- high repeatability along consecutive cycles (cycle-to-cycle, C2C, stability) [6].
- high reproducibility among different devices (device-to-device, D2D, stability) [6].
- 5-orders of magnitude ratio between twoHRSandLRS. This is as much an advantage, since distinguishing between the two states is quite evident, as a drawback due to the requirement for handling such dissimilar current levels [5].
- big size electrodes (unfeasible in terms of layout footprint) [6].
- complexity of the stack (to be reduced to its minimum) [6].
- too thick layers (which would impact in the package density of any eventual device) [6].
2. Results
2.1. Microscopy Analysis
2.2. Subsequent Deposition Processes
3. Discussion
3.1. Threshold Switching
3.2. Ferroelectric HfO-Based Systems
3.3. Antiferroelectric HfO
4. Final Remarks and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Böscke, T.S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011, 99, 102903. [Google Scholar] [CrossRef]
- Polakowski, P.; Müller, J. Ferroelectricity in undoped hafnium oxide. Appl. Phys. Lett. 2015, 106, 232905. [Google Scholar] [CrossRef]
- Schuller, I.K.; Stevens, R.; Pino, R.; Pechan, M. Neuromorphic Computing—From Materials Research to Systems Architecture Roundtable; Technical Report; USDOE Office of Science (SC): Washington, DC, USA, 2015. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Quinteros, C.P.; Hardtdegen, A.; Barella, M.; Golmar, F.; Palumbo, F.; Curiale, J.; Hoffmann-Eifert, S.; Levy, P. The Atomic Layer Deposition Technique for the Fabrication of Memristive Devices: Impact of the Precursor on Pre-deposited Stack Materials. In New Uses of Micro and Nanomaterials; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Quinteros, C.P. Oxidos delgados para micro y nanoelectrónica: Degradación, ruptura y aplicaciones tecnológicas. In Text, Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires: Buenos Aires, Argentina, 2016. [Google Scholar]
- Ho, C.P.; Plummer, J.D. Si/SiO2 Interface Oxidation Kinetics: A Physical Model for the Influence of High Substrate Doping Levels II. Comparison with Experiment and Discussion. J. Electrochem. Soc. 1979, 126, 1523–1530. [Google Scholar] [CrossRef]
- Zazpe, R. Resistive switching in Hafnium oxide. In Text, CIC nanoGUNE; Universidad del País Vasco: San Sebastián, Spain, 2014. [Google Scholar]
- Linn, E.; Rosezin, R.; Kügeler, C.; Waser, R. Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 2010, 9, 403–406. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.B.; Carter, C.B. Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Khotseng, L. Oxygen Reduction Reaction. In Electrocatalysts for Fuel Cells and Hydrogen Evolution-Theory to Design; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Szot, K.; Rogala, M.; Speier, W.; Klusek, Z.; Besmehn, A.; Waser, R. TiO2—A prototypical memristive material. Nanotechnology 2011, 22, 254001. [Google Scholar] [CrossRef]
- Yoon, J.H.; Kim, K.M.; Song, S.J.; Seok, J.Y.; Yoon, K.J.; Kwon, D.E.; Park, T.H.; Kwon, Y.J.; Shao, X.; Hwang, C.S. Pt/Ta2O5/HfO2-x/Ti Resistive Switching Memory Competing with Multilevel NAND Flash. Adv. Mater. 2015, 27, 3811–3816. [Google Scholar] [CrossRef]
- Puurunen, R.L.; Sajavaara, T.; Santala, E.; Miikkulainen, V.; Saukkonen, T.; Laitinen, M.; Leskelä, M. Controlling the crystallinity and roughness of atomic layer deposited titanium dioxide films. J. Nanosci. Nanotechnol. 2011, 11, 8101–8107. [Google Scholar] [CrossRef]
- Ovshinsky, S.R. Reversible Electrical Switching Phenomena in Disordered Structures. Phys. Rev. Lett. 1968, 21, 1450–1453. [Google Scholar] [CrossRef]
- Adler, D.; Henisch, H.K.; Mott, S.N. The mechanism of threshold switching in amorphous alloys. Rev. Mod. Phys. 1978, 50, 209–220. [Google Scholar] [CrossRef]
- Funck, C.; Menzel, S.; Aslam, N.; Zhang, H.; Hardtdegen, A.; Waser, R.; Hoffmann-Eifert, S. Multidimensional Simulation of Threshold Switching in NbO2 Based on an Electric Field Triggered Thermal Runaway Model. Adv. Electron. Mater. 2016, 2, 1600169. [Google Scholar] [CrossRef]
- Goodwill, J.M.; Ramer, G.; Li, D.; Hoskins, B.D.; Pavlidis, G.; McClelland, J.J.; Centrone, A.; Bain, J.A.; Skowronski, M. Spontaneous current constriction in threshold switching devices. Nat. Commun. 2019, 10, 1628. [Google Scholar] [CrossRef] [PubMed]
- Rabe, K.M.; Ahn, C.H.; Triscone, J.M. (Eds.) Physics of Ferroelectrics: A Modern Perspective; Topics in Applied Physics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Martin, D.; Müller, J.; Schenk, T.; Arruda, T.M.; Kumar, A.; Strelcov, E.; Yurchuk, E.; Müller, S.; Pohl, D.; Schröder, U.; et al. Ferroelectricity in Si-Doped HfO2 Revealed: A Binary Lead-Free Ferroelectric. Adv. Mater. 2014, 26, 8198–8202. [Google Scholar] [CrossRef] [PubMed]
- Sang, X.; Grimley, E.D.; Schenk, T.; Schroeder, U.; LeBeau, J.M. On the structural origins of ferroelectricity in HfO2 thin films. Appl. Phys. Lett. 2015, 106, 162905. [Google Scholar] [CrossRef]
- Zazpe, R.; Ungureanu, M.; Golmar, F.; Stoliar, P.; Llopis, R.; Casanova, F.; Pickup, D.F.; Rogero, C.; Hueso, L.E. Resistive switching dependence on atomic layer deposition parameters in HfO2-based memory devices. J. Mater. Chem. C 2013, 2, 3204–3211. [Google Scholar] [CrossRef]
- Chakraborty, J.; Welzel, U.; Mittemeijer, E.J. Mechanisms of interdiffusion in Pd–Cu thin film diffusion couples. Thin Solid Films 2010, 518, 2010–2020. [Google Scholar] [CrossRef]
- Schenk, T.; Yurchuk, E.; Mueller, S.; Schroeder, U.; Starschich, S.; Böttger, U.; Mikolajick, T. About the deformation of ferroelectric hystereses. Appl. Phys. Rev. 2014, 1, 041103. [Google Scholar] [CrossRef]
- Kittel, C. Theory of Antiferroelectric Crystals. Phys. Rev. 1951, 82, 729–732. [Google Scholar] [CrossRef]
- Hao, X.; Zhai, J.; Kong, L.B.; Xu, Z. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog. Mater. Sci. 2014, 63, 1–57. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.; Li, Q.; Guan, Y.; Cao, F.; Dong, X.; Müller, J.; Schenk, T.; Schröder, U. Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl. Phys. Lett. 2013, 103, 192904. [Google Scholar] [CrossRef]
- Rabe, K.M. Antiferroelectricity in Oxides: A Reexamination. In Functional Metal Oxides; John Wiley & Sons, Ltd: Weinheim, Germany, 2013; pp. 221–244. [Google Scholar] [CrossRef]
- Ayyub, P.; Chattopadhyay, S.; Pinto, R.; Multani, M.S. Ferroelectric behavior in thin films of antiferroelectric materials. Phys. Rev. B 1998, 57, R5559–R5562. [Google Scholar] [CrossRef]
- Asada, T.; Koyama, Y. Coexistence of ferroelectricity and antiferroelectricity in lead zirconate titanate. Phys. Rev. B 2004, 70, 104105. [Google Scholar] [CrossRef]
- Pešić, M.; Fengler, F.P.G.; Larcher, L.; Padovani, A.; Schenk, T.; Grimley, E.D.; Sang, X.; LeBeau, J.M.; Slesazeck, S.; Schroeder, U.; et al. Physical Mechanisms behind the Field-Cycling Behavior of HfO2-Based Ferroelectric Capacitors. Adv. Funct. Mater. 2016, 26, 4601–4612. [Google Scholar] [CrossRef]
- Lomenzo, P.D.; Richter, C.; Mikolajick, T.; Schroeder, U. Depolarization as Driving Force in Antiferroelectric Hafnia and Ferroelectric Wake-Up. ACS Appl. Electron. Mater. 2020, 2, 1583–1595. [Google Scholar] [CrossRef]
- Metaxas, P.J.; Jamet, J.P.; Mougin, A.; Cormier, M.; Ferré, J.; Baltz, V.; Rodmacq, B.; Dieny, B.; Stamps, R.L. Creep and Flow Regimes of Magnetic Domain-Wall Motion in Ultrathin Pt/ Co/ Pt Films with Perpendicular Anisotropy. Phys. Rev. Lett. 2007, 99, 217208. [Google Scholar] [CrossRef] [Green Version]
- Vermeulen, B.F.; Ciubotaru, F.; Popovici, M.I.; Swerts, J.; Couet, S.; Radu, I.P.; Stancu, A.; Temst, K.; Groeseneken, G.; Adelmann, C.; et al. Ferroelectric Control of Magnetism in Ultrathin HfO2\Co\Pt Layers. ACS Appl. Mater. Interfaces 2019, 11, 34385–34393. [Google Scholar] [CrossRef]
B1 | B2 | B3 | |
---|---|---|---|
Condition or Parameter | |||
Si doping (cm) | (p-type) | (n-type) | (p-type) |
Oxidized SiO thickness (nm) | 150 | 120 | 0 |
Ti thickness (nm) | 20 | 0, 10, 20 | 0, 5, 10, 17, 35 |
Ti deposition method | sputtering | sputtering | sputtering |
ALD pre-process | - | - | O and N pulses at 300C |
T during ALD (C) | 300 | 175 | 100 |
Oxygen precursor | ozone | water | ozone |
Hf precursor | TDMAHf | TEMAHf | TDMAHf |
HfO thickness (nm) | 20 | 10, 20 | 20 |
TE material (thickness in nm) | Co(35)/Pd(40) | Pt(70) | Co(30)/Pt(40), Pt(70), Ti(10)/Au(60) |
TE deposition method | e-beam/sputtering | sputtering | |
TE shape | square | circle | circle |
TE dimension (µm) | L = 200 | = 150, 250 | = 100, 125, 200, 250, 350, 500, 1000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quinteros, C.P.; Antoja-Lleonart, J.; Noheda, B. Plausible Physical Mechanisms for Unusual Volatile/Non- Volatile Resistive Switching in HfO2-Based Stacks. Condens. Matter 2021, 6, 7. https://doi.org/10.3390/condmat6010007
Quinteros CP, Antoja-Lleonart J, Noheda B. Plausible Physical Mechanisms for Unusual Volatile/Non- Volatile Resistive Switching in HfO2-Based Stacks. Condensed Matter. 2021; 6(1):7. https://doi.org/10.3390/condmat6010007
Chicago/Turabian StyleQuinteros, Cynthia P., Jordi Antoja-Lleonart, and Beatriz Noheda. 2021. "Plausible Physical Mechanisms for Unusual Volatile/Non- Volatile Resistive Switching in HfO2-Based Stacks" Condensed Matter 6, no. 1: 7. https://doi.org/10.3390/condmat6010007
APA StyleQuinteros, C. P., Antoja-Lleonart, J., & Noheda, B. (2021). Plausible Physical Mechanisms for Unusual Volatile/Non- Volatile Resistive Switching in HfO2-Based Stacks. Condensed Matter, 6(1), 7. https://doi.org/10.3390/condmat6010007