Controlling Electrical Conduction through Noble Metal Thin Films by Surface Plasmon Resonance
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Novotny, L.; Hecht, B. Principles of Nano-Optics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Pitarke, J.M.; Silkin, V.M.; Chulkov, E.V.; Echenique, P.M. Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 2007, 70, 1–87. [Google Scholar] [CrossRef]
- Zayats, A.V.; Smolyaninov, I.I.; Maradudin, A.A. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005, 408, 131–314. [Google Scholar] [CrossRef]
- Zayats, A.V.; Smolyaninov, I.I. Near-field photonics: Surface plasmon polaritons and localized surface plasmons. J. Opt. A Pure Appl. Opt. 2003, 5, S16–S50. [Google Scholar] [CrossRef]
- Sharma, S.C. Surface Plasmon Resonance Sensors: Fundamental Concepts, Selected Techniques, Materials, and Applications. In Advances in Sensors: Reviews’ Book Series; Yurish, S.Y., Ed.; IFSA Publishing: Barcelona, Spain, 2018; Volume 5, pp. 25–77. [Google Scholar]
- Ritchie, R.H. Plasma Losses by Fast Electrons in Thin Films. Phys. Rev. 1957, 106, 874–881. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics, 7th ed.; Wiley: Hoboken, NJ, USA, 1996. [Google Scholar]
- Homola, J.; Koudela, I.; Yee, S.S. Surface plasmon resonance sensors based on diffraction gratings and prism couplers: Sensitivity comparison. Sens. Actuators B Chem. 1999, 54, 16–24. [Google Scholar] [CrossRef]
- Kneipp, K.; Flemming, J. Surface Enhanced Raman-Scattering (Sers) of Nucleic-Acids Adsorbed on Colloidal Silver Particles. J. Mol. Struct 1986, 145, 173–179. [Google Scholar] [CrossRef]
- Pines, D. Electron Interaction in Solids. Can. J. Phys. 1956, 34, 1379–1394. [Google Scholar] [CrossRef]
- Bohm, D.; Pines, D. Screening of Electronic Interactions in a Metal. Phys. Rev. 1950, 80, 903–904. [Google Scholar] [CrossRef]
- Pines, D.; Bohm, D. A Collective Description of Electron Interactions. Collective Vs Individual Particle Aspects of the Interactions. Phys. Rev. 1952, 85, 338–353. [Google Scholar] [CrossRef]
- Bohm, D.; Pines, D. A Collective Description of Electron Interactions. Coulomb Interactions in a Degenerate Electron Gas. Phys. Rev. 1953, 92, 609–625. [Google Scholar] [CrossRef] [Green Version]
- Garland, J.W. Mechanisms for Superconductivity in Transition Metals. Phys. Rev. Lett. 1963, 11, 111. [Google Scholar] [CrossRef]
- Frohlich, H. Superconductivity in Metals with Incomplete Inner Shells. J. Phys. Part C Solid 1968, 1, 544. [Google Scholar] [CrossRef]
- Tiwari, K.; Sharma, S. C. plasmon based sensor with order-of-magnitude higher sensitivity to electric field induced changes in dielectric environment at metal/nematic liquid-crystal unterface. Sens. Actuators A Phys. 2014, 216, 128–135. [Google Scholar] [CrossRef]
- Tiwari, K.; Sharma, S.C.; Hozhabri, N. High performance surface plasmon sensors: Simulations and measurements. J. Appl. Phys. 2015, 118, 093105. [Google Scholar] [CrossRef]
- Tiwari, K.; Sharma, S.C.; Hozhabri, N. Hafnium dioxide as a dielectric for highly-sensitive waveguide-coupled surface plasmon resonance sensors. AIP Adv. 2016, 6, 045217. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, K.; Singh, A.; Sharma, S.C. Evidence for surface plasmons in a liquid crystal containing gold nanoparticles. Appl. Phys. Lett. 2012, 101. [Google Scholar] [CrossRef]
- Singh, A.K.; Sharma, S.C. A fixed detector Kretschmann configuration optical system to study surface plasmon excitations. Opt. Laser Technol. 2014, 56, 256–262. [Google Scholar] [CrossRef]
- Tiwari, K. Bimetallic Waveguide-Coupled Sensors for Tunable Plasmonic Devices. Ph. D. Thesis, University of Texas at Arlington, Arlington, TX, USA, 2015. [Google Scholar]
- Akafzade, H. Theoretical and Experimental Probes of Dispersion in Two-Dimensional Materials. Ph.D. Thesis, University of Texas at Arlington, Arlington, TX, USA, 2020. [Google Scholar]
- Hussein, A.; Sharma, S.C. New Metamaterial as a Broadband Absorber of Sunlight with Extremely High Absorption Efficiency. AIP Adv. 2020, 10, 035209. [Google Scholar] [CrossRef] [Green Version]
- Bohm, D.; Huang, K.; Pines, D. Role of Subsidiary Conditions in the Collective Description of Electron Interactions. Phys. Rev. 1957, 107, 71–80. [Google Scholar] [CrossRef]
- Bohm, D.; Pines, D. A Collective Description of Electron Interactions. Magnetic Interactions. Phys. Rev. 1951, 82, 625–634. [Google Scholar] [CrossRef]
- Fröhlich, H. Theory of Dielectrics; Dielectric Constant and Dielectric Loss, 2nd ed.; Clarendon Press: Oxford, UK, 1958; p. 192. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.C.; Khichar, V.; Akafzade, H.; Zinn, D.; Hozhabri, N. Controlling Electrical Conduction through Noble Metal Thin Films by Surface Plasmon Resonance. Condens. Matter 2020, 5, 52. https://doi.org/10.3390/condmat5030052
Sharma SC, Khichar V, Akafzade H, Zinn D, Hozhabri N. Controlling Electrical Conduction through Noble Metal Thin Films by Surface Plasmon Resonance. Condensed Matter. 2020; 5(3):52. https://doi.org/10.3390/condmat5030052
Chicago/Turabian StyleSharma, Suresh C., Vivek Khichar, Hussein Akafzade, Douglas Zinn, and Nader Hozhabri. 2020. "Controlling Electrical Conduction through Noble Metal Thin Films by Surface Plasmon Resonance" Condensed Matter 5, no. 3: 52. https://doi.org/10.3390/condmat5030052
APA StyleSharma, S. C., Khichar, V., Akafzade, H., Zinn, D., & Hozhabri, N. (2020). Controlling Electrical Conduction through Noble Metal Thin Films by Surface Plasmon Resonance. Condensed Matter, 5(3), 52. https://doi.org/10.3390/condmat5030052