High-Pressure Synthesis and Superconducting Properties of NaCl-Type In1−xPbxTe (x = 0–0.8)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hsu, F.C.; Luo, J.Y.; Yeh, K.W.; Chen, T.K.; Huang, T.W.; Wu, P.M.; Lee, Y.C.; Huang, Y.L.; Chu, Y.Y.; Yan, D.C.; et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl. Acad. Sci. USA 2008, 105, 14262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizuguchi, Y.; Takano, Y. Review of Fe chalcogenides as the simplest Fe-based superconductor. J. Phys. Soc. Jpn. 2010, 79, 102001. [Google Scholar] [CrossRef] [Green Version]
- Hor, Y.S.; Williams, A.J.; Checkelsky, J.G.; Roushan, P.; Seo, J.; Xu, Q.; Zandbergen, H.W.; Yazdani, A.; Ong, N.P.; Cava, R.J. Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator. Phys. Rev. Lett. 2010, 104, 057001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, S.; Kriener, M.; Segawa, K.; Yada, K.; Tanaka, Y.; Sato, M.; Ando, Y. Topological superconductivity in CuxBi2Se3. Phys. Rev. Lett. 2011, 107, 217001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizuguchi, Y. Review of superconductivity in BiS2-based layered materials. J. Phys. Chem. Solids 2015, 84, 34. [Google Scholar] [CrossRef]
- Mizuguchi, Y. Material development and physical properties of BiS2-Based layered compounds. J. Phys. Soc. Jpn. 2019, 88, 041001. [Google Scholar] [CrossRef]
- Ren, Z.; Kriener, M.; Taskin, A.A.; Sasaki, S.; Segawa, K.; Ando, Y. Anomalous metallic state above the upper critical field of the conventional three-dimensional superconductor AgSnSe2 with strong intrinsic disorder. Phys. Rev. B 2013, 87, 064512. [Google Scholar] [CrossRef] [Green Version]
- Erickson, A.S.; Chu, J.H.; Toney, M.F.; Geballe, T.H.; Fisher, I.R. Enhanced superconducting pairing interaction in indium-doped tin telluride. Phys. Rev. B 2009, 79, 024520. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, G.; Bawden, L.; Cavendish, S.; Lees, M.R. Superconducting properties of the In-substituted topological crystalline insulator SnTe. Phys. Rev. B 2013, 87, 140507. [Google Scholar] [CrossRef] [Green Version]
- Novak, M.; Sasaki, S.; Kriener, M.; Segawa, K.; Ando, Y. Unusual nature of fully gapped superconductivity in In-doped SnTe. Phys. Rev. B 2013, 88, 140502. [Google Scholar] [CrossRef] [Green Version]
- Zhong, R.D.; Schneeloch, J.A.; Shi, X.Y.; Xu, Z.J.; Zhang, C.; Tranquada, J.M.; Li, Q.; Gu, G.D. Optimizing the superconducting transition temperature and upper critical field of Sn1−xInxTe. Phys. Rev. B 2013, 88, 020505. [Google Scholar] [CrossRef] [Green Version]
- Haldolaarachchige, N.; Gibson, Q.; Xie, W.; Nielsen, M.B.; Kushwaha, S.; Cava, R.J. Anomalous composition dependence of the superconductivity in in-doped Snte. Phys. Rev. B 2016, 93, 024520. [Google Scholar] [CrossRef] [Green Version]
- Mizuguchi, Y.; Miura, O. High-pressure synthesis and superconductivity of ag-doped topological crystalline insulator Snte (Sn1−xAgxTe with x = 0–0.5). J. Phys. Soc. Jpn. 2016, 85, 053702. [Google Scholar] [CrossRef] [Green Version]
- Mizuguchi, Y.; Yamada, A.; Higashinaka, R.; Matsuda, T.D.; Aoki, Y.; Miura, O.; Nagao, M. Specific heat and electrical transport properties of Sn0.8Ag0.2Te superconductor. J. Phys. Soc. Jpn. 2016, 85, 103701. [Google Scholar] [CrossRef] [Green Version]
- Ando, Y.; Fu, L. Topological crystalline insulators and topological superconductors: From concepts to materials. Annu. Rev. Condens. Matter Phys. 2015, 6, 361. [Google Scholar] [CrossRef]
- Mathur, M.P.; Deis, D.W.; Jones, C.K.; Carr, W.J., Jr. Superconductivity as a function of carrier density and magnetic spin concentration in the SnTe-MnTe system. J. Phys. Chem. Solids 1973, 34, 183. [Google Scholar] [CrossRef]
- Sato, T.; Tanaka, Y.; Nakayama, K.; Souma, S.; Takahashi, T.; Sasaki, S.; Ren, Z.; Taskin, A.A.; Segawa, K.; Ando, Y. Fermiology of the strongly spin-orbit coupled superconductor Sn1−xInxTe: Implications for topological superconductivity. Phys. Rev. Lett. 2013, 110, 206804. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, K.; Ai, Y.; Jeschke, H.O.; Akimitsu, J. Enhanced superconducting transition temperatures in the rocksalt-type superconductors In1−xSnxTe (x ≤ 0.5). Phys. Rev. B 2018, 97, 104511. [Google Scholar] [CrossRef] [Green Version]
- Kriener, M.; Kamitani, M.; Koretsune, T.; Arita, R.; Taguchi, Y.; Tokura, Y. Tailoring band structure and band filling in a simple cubic (IV, III)-VI superconductor. Phys. Rev. Mater. 2018, 2, 044802. [Google Scholar] [CrossRef]
- Sleight, A.W.; Gillson, J.L.; Bierstedt, P.E. High-temperature superconductivity in the BaPb1−xBixO3 systems. Solid State Commun. 1975, 17, 27. [Google Scholar] [CrossRef]
- Cava, R.J.; Batlogg, B.; Krajewski, J.J.; Farrow, R.; Rupp, L.W., Jr.; White, A.E.; Short, K.; Peck, W.F.; Kometani, T. Superconductivity near 30 K without copper: The Ba0.6K0.4BiO3 perovskite. Nature 1988, 332, 814. [Google Scholar] [CrossRef]
- Matsushita, Y.; Bluhm, H.; Geballe, T.H.; Fisher, I.R. Evidence for charge kondo effect in superconducting Tl-doped pbte. Phys. Rev. Lett. 2005, 94, 157002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, A.I.; Woolley, J.C.; Nikolic, P.; Grierson, R. Solid solutions of CdTe and InTe in PbTe and SnTe. Trans. Metall. Soc. AIME 1964, 230, 342. [Google Scholar]
- Izumi, F.; Momma, K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 2007, 130, 15. [Google Scholar] [CrossRef]
- Martin, J.; Nolas, G.S.; Zhang, W.; Chen, L. PbTe nanocomposites synthesized from PbTe nanocrystals. Appl. Phys. Lett. 2007, 90, 222112. [Google Scholar] [CrossRef]
- Werthamer, N.R.; Helfand, E.; Hohemberg, P.C. Temperature and purity dependence of the superconducting critical field, Hc2. III. Electron spin and spin-orbit effects. Phys. Rev. 1966, 147, 295. [Google Scholar] [CrossRef]
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of superconductivity. Phys. Rev. 1957, 108, 1175. [Google Scholar] [CrossRef] [Green Version]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105. [Google Scholar] [CrossRef]
- Hase, I.; Yanagisawa, T. Madelung energy of the valence-skipping compound BaBiO3. Phys. Rev. B 2007, 76, 174103. [Google Scholar] [CrossRef] [Green Version]
- Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsuno, M.; Jha, R.; Hoshi, K.; Sogabe, R.; Goto, Y.; Mizuguchi, Y. High-Pressure Synthesis and Superconducting Properties of NaCl-Type In1−xPbxTe (x = 0–0.8). Condens. Matter 2020, 5, 14. https://doi.org/10.3390/condmat5010014
Katsuno M, Jha R, Hoshi K, Sogabe R, Goto Y, Mizuguchi Y. High-Pressure Synthesis and Superconducting Properties of NaCl-Type In1−xPbxTe (x = 0–0.8). Condensed Matter. 2020; 5(1):14. https://doi.org/10.3390/condmat5010014
Chicago/Turabian StyleKatsuno, Masayoshi, Rajveer Jha, Kazuhisa Hoshi, Ryota Sogabe, Yosuke Goto, and Yoshikazu Mizuguchi. 2020. "High-Pressure Synthesis and Superconducting Properties of NaCl-Type In1−xPbxTe (x = 0–0.8)" Condensed Matter 5, no. 1: 14. https://doi.org/10.3390/condmat5010014
APA StyleKatsuno, M., Jha, R., Hoshi, K., Sogabe, R., Goto, Y., & Mizuguchi, Y. (2020). High-Pressure Synthesis and Superconducting Properties of NaCl-Type In1−xPbxTe (x = 0–0.8). Condensed Matter, 5(1), 14. https://doi.org/10.3390/condmat5010014