Probing Phase Separation and Local Lattice Distortions in Cuprates by Raman Spectroscopy
Abstract
1. Introduction
2. The Yttrium Family Cuprates
2.1. Phase Separation from Oxygen Doping
2.2. Phase Separation from Atomic Substitutions
2.3. Pressure Induced Lattice Effects
3. Conclusions
Funding
Conflicts of Interest
References
- Yukalov, V.I. Heterophase fluctuations in ferroelectrics. Ferroelectrics 1988, 82, 11–24. [Google Scholar] [CrossRef]
- Yukalov, V.I. Phase transitions and heterophase fluctuations. Phys. Rep. 1991, 208, 395–489. [Google Scholar] [CrossRef]
- Nagaev, E.L. Phase-separation mechanism for giant magnetoresistance of lanthanum manganites. Phys. Lett. A 1996, 218, 367–372. [Google Scholar] [CrossRef]
- Lanzara, A.; Saini, N.L.; Brunelli, M.; Natali, F.; Bianconi, A.; Radaelli, P.G.; Cheong, S.W. Crossover from large to small polarons across the metal-insulator transition in manganites. Phys. Rev. Lett. 1998, 81, 878–881. [Google Scholar] [CrossRef]
- Yunoki, S.; Hu, J.; Malvezzi, A.L.; Moreo, A.; Furukawa, N.; Dagotto, E. Phase separation in electronic models for manganites. Phys. Rev. Lett. 1998, 80, 845–848. [Google Scholar] [CrossRef]
- Uehara, M.; Mori, S.; Chen, C.H.; Cheong, S.W. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 1999, 399, 560–563. [Google Scholar] [CrossRef]
- Kagan, M.Y.; Kugel, K.I. Inhomogeneous charge distributions and phase separation in manganites. Phys. Uspekhi 2001, 44, 553–570. [Google Scholar] [CrossRef]
- Kagan, M.Y.; Klaptsov, A.V.; Brodsky, I.V.; Kugel, K.I.; Sboychakov, A.O.; Rakhmanov, A.L. Nanoscale phase separation in manganites. J. Phys. A Math. Gen. 2003, 36, 9155–9164. [Google Scholar] [CrossRef]
- Dagotto, E.; Burgy, J.; Moreo, A. Nanoscale phase separation in colossal magnetoresistance materials: Lessons for the cuprates? Solid State Commum. 2003, 126, 9–22. [Google Scholar] [CrossRef]
- Dagotto, E. Complexity in strongly correlated electronic systems. Science 2005, 309, 257–262. [Google Scholar] [CrossRef]
- Tokura, Y. Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 2006, 69, 797–851. [Google Scholar] [CrossRef]
- Hayden, S.M.; Lander, G.H.; Zaretsky, J.; Brown, P.J.; Stassis, C.; Metcalf, P.; Honig, J.M. Incommensurate magnetic correlations in La1.8Sr0.2NiO4. Phys. Rev. Lett. 1992, 68, 1061. [Google Scholar] [CrossRef] [PubMed]
- Campi, G.; Poccia, N.; Joseph, B.; Bianconi, A.; Mishra, S.; Lee, J.; Roy, S.; Nugroho, A.A.; Buchholz, M.; Braden, M.; et al. Direct Visualization of Spatial Inhomogeneity of Spin Stripes Order in La1.72Sr0.28NiO4. Condens. Matter 2019, 4, 77. [Google Scholar] [CrossRef]
- Testardi, L.R. Structural instability and superconductivity in A-15 compounds. Rev. Mod. Phys. 1975, 47, 637–648. [Google Scholar] [CrossRef]
- Bednorz, J.G.; Müller, K.A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B Condens. Matter 1986, 64, 189–193. [Google Scholar] [CrossRef]
- Jorgensen, A.J.; Dabrowski, B.; Pei, S.; Hinks, D.G.; Soderholm, L.; Morosin, B.; Schirber, E.L.; Venturini, E.L.; Ginley, D.S. Superconducting phase of La2CuO4+δ: A superconducting composition resulting from phase separation. Phys. Rev. B 1988, 38, 11337–11345. [Google Scholar] [CrossRef]
- Benedek, G.; Müller, K.A. Phase Separation in Cuprate Superconductors; World Scientific: Singapore, 1992. [Google Scholar]
- Bianconi, A. Phase Separation in Cuprate Superconductors; Müller, K.A., Benedek, G., Eds.; World Scientific: Singapore, 1993; pp. 125–138. [Google Scholar]
- Kremer, R.K.; Sigmund, E.; Hizhnyakov, V.; Hentsch, F.; Simon, A.; Müller, K.A.; Mehring, M. Percolative phase separation in La2CuO4+δ and La2−xSrxCuO4. Z. Phys. B Condens. Matter 1992, 86, 319–324. [Google Scholar] [CrossRef]
- Benedek, G.; Müller, K.A. Phase Separation in Cuprate Superconductors; Springer: Berlin/Herdelberg, Germany, 1994. [Google Scholar]
- Bianconi, A.; Missori, M. The Coupling of a Wigner Polaronic Charge Density Wave with a Fermi Liquid Arising from the Instability of a Wigner Polaron Crystal: A Possible Pairing Mechanism in High Tc Superconductors. In Phase Separation in Cuprate Superconductors; Springer: Berlin/Heidelberg, Germany, 1994; pp. 272–289. [Google Scholar]
- Bianconi, A. On the Fermi liquid coupled with a generalized Wigner polaronic CDW giving high Tc superconductivity. Solid State Commun. 1994, 91, 1–5. [Google Scholar] [CrossRef]
- Bianconi, A.; Missori, M. High Tc superconductivity by quantum confinement. J. Phys. 1994, 4, 361–365. [Google Scholar]
- Bianconi, A. On the possibility of new high Tc superconductors by producing metal heterostructures as in the cuprate perovskites. Solid State Commum. 1994, 89, 933–936. [Google Scholar] [CrossRef]
- Hizhnyakov, V.; Sigmund, E.; Seibold, G. Polaron formation and percolative phase separation in HTSC. In Phase Separation in Cuprate Superconductors; Springer: Berlin/Heidelberg, Germany, 1994; pp. 50–65. [Google Scholar]
- Bianconi, A.; Missori, M.; Oyanagi, H.; Yamaguchi, H.; Ha, D.H.; Nishiara, Y.; Della Longa, S. The measurement of the polaron size in the metallic phase of cuprate superconductors. Eur. Lett. 1995, 31, 411. [Google Scholar] [CrossRef]
- Nagaev, E.L. Phase separation in high-temperature superconductors and related magnetic materials. Uspekhi Fizicheskikh Nauk 1995, 165, 529–555. [Google Scholar] [CrossRef]
- Zech, D.; Conder, K.; Keller, H.; Kaldis, E.; Liarokapis, E.; Poulakis, N.; Müller, K.A. Anharmonic Properties of High-Tc Cuprates; Mihailovic, D., Ruani, G., Kaldis, E., Müller, K.A., Eds.; World Scientific: Singapore, 1995; pp. 18–29. [Google Scholar]
- Kusmartsev, F.V.; Di Castro, D.; Bianconi, G.; Bianconi, A. Transformation of strings into an inhomogeneous phase of stripes and itinerant carriers. Phys. Lett. A 2000, 275, 118–123. [Google Scholar] [CrossRef]
- Gor’kov, L.P. Phase separation in a two-component model for cuprates. J. Supercond. 2000, 13, 765–769. [Google Scholar] [CrossRef]
- Bianconi, A.; Di Castro, D.; Bianconi, G.; Pifferi, A.; Saini, N.L.; Chou, F.C.; Johnston, D.C.; Colapietro, M. Coexistence of stripes and superconductivity: Tc amplification in a superlattice of superconducting stripes. Phys. C 2000, 341, 1719–1722. [Google Scholar] [CrossRef]
- Coleman, A.J. Phase Transitions and Self-Organization in Electronic and Molecular Networks; Phillips, J.C., Thorpe, M.F., Eds.; Kluwer: New York, NY, USA, 2001; pp. 23–35. [Google Scholar]
- Phillips, J.C. Percolative model of nanoscale phase separation in high-temperature superconductors. Philos. Mag. B 2002, 82, 783–790. [Google Scholar] [CrossRef]
- Bishop, A.R.; Lookman, T.; Saxena, A.; Shenoy, S.R. Elasticity-driven nanoscale texturing in complex electronic materials. Eur. Phys. Lett. 2003, 63, 289–295. [Google Scholar] [CrossRef]
- Phillips, J.C.; Saxena, A.; Bishop, A.R. Pseudogaps, dopants, and strong disorder in cuprate high-temperature superconductors. Rep. Prog. Phys. 2003, 66, 2111–2182. [Google Scholar] [CrossRef]
- De Mello, E.V.L.; Caixeiro, E.S. Effects of phase separation in the cuprate superconductors. Phys. Rev. B 2004, 70, 224517. [Google Scholar] [CrossRef]
- Kugel, K.I.; Rakhmanov, A.L.; Sboychakov, A.O. Phase separation in Jahn-Teller systems with localized and itinerant electrons. Phys. Rev. Lett. 2005, 95, 267210. [Google Scholar] [CrossRef]
- De Mello, E.V.L.; Dias, D.H.N. Phase separation and the phase diagram of cuprate superconductors. J. Phys. Condens. Matter 2007, 19, 086218. [Google Scholar] [CrossRef][Green Version]
- Fine, B.V.; Egami, T. Phase separation in the vicinity of quantum-critical doping concentration: Implications for high-temperature superconductors. Phys. Rev. B 2008, 77, 014519. [Google Scholar] [CrossRef]
- Kugel, K.I.; Rakhmanov, A.L.; Sboychakov, A.O.; Poccia, N.; Bianconi, A. Model for phase separation controlled by doping and the internal chemical pressure in different cuprate superconductors. Phys. Rev. B 2008, 78, 165124. [Google Scholar] [CrossRef]
- Fratini, M.; Poccia, N.; Bianconi, A. The Feshbach resonance and nanoscale phase separation in a polaron liquid near the quantum critical point for a polaron Wigner crystal. J. Phys. 2008, 108, 012036. [Google Scholar] [CrossRef]
- Innocenti, D.; Ricci, A.; Poccia, N.; Campi, G.; Fratini, M.; Bianconi, A. A model for liquid-striped liquid phase separation in liquids of anisotropic polarons. J. Supercond. Nov. Magn. 2009, 22, 529–533. [Google Scholar] [CrossRef]
- De Mello, E.V.L.; Kasal, R.B.; Passos, C.A.C. Electronic phase separation transition as the origin of the superconductivity and pseudogap phase of cuprates. J. Phys. Condens. Matter 2009, 21, 235701. [Google Scholar] [CrossRef][Green Version]
- Fratini, M.; Poccia, N.; Ricci, A.; Campi, G.; Burghammer, M.; Aeppli, G.; Bianconi, A. Scale-free structural organization of oxygen interstitials in La2CuO4+y. Nature 2010, 466, 841–844. [Google Scholar] [CrossRef]
- Poccia, N.; Fratini, M.; Ricci, A.; Campi, G.; Barba, L.; Vittorini-Orgeas, A.; Bianconi, G.; Aeppli, G.; Bianconi, A. Evolution and control of oxygen order in a cuprate superconductor. Nat. Mater. 2011, 10, 733–736. [Google Scholar] [CrossRef]
- Poccia, N.; Ricci, A.; Campi, G.; Fratini, M.; Puri, A.; Di Gioacchino, D.; Marcelli, A.; Reynolds, M.; Burghammer, M.; Saini, N.L.; et al. Optimum inhomogeneity of local lattice distortions in La2CuO4+y. Proc. Natl. Acad. Sic. USA 2012, 109, 15685–15690. [Google Scholar] [CrossRef]
- Pinheiro, C.F.S.; De Mello, E.V.L. Random resistivity network calculations for cuprate superconductors with an electronic phase separation transition. Physica A 2012, 391, 1532–1539. [Google Scholar] [CrossRef]
- De Mello, E.V.L. Describing how the superconducting transition in La2CuO4+y is related to the iO phase separation. J. Supercond. Nov. Magn. 2012, 25, 1347–1350. [Google Scholar] [CrossRef]
- De Mello, E.V.L. Description and connection between the oxygen order evolution and the superconducting transition in La2CuO4+y. Eur. Phys. Lett. 2012, 98, 57008. [Google Scholar] [CrossRef]
- Phillips, J.C. Ineluctable complexity of high temperature superconductivity elucidated. J. Supercond. Nov. Magn. 2014, 27, 345–347. [Google Scholar] [CrossRef]
- Bianconi, A.; Poccia, N.; Sboychakov, A.O.; Rakhmanov, A.L.; Kugel, K.I. Intrinsic arrested nanoscale phase separation near a topological Lifshitz transition in strongly correlated two-band metals. Supercond. Sci. Technol. 2015, 28, 024005. [Google Scholar] [CrossRef]
- Campi, G.; Bianconi, A.; Poccia, N.; Bianconi, G.; Barba, L.; Arrighetti, G.; Innocenti, D.; Karpinski, J.; Zhigadlo, N.D.; Kazakov, S.M.; et al. Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor. Nature 2015, 525, 359–362. [Google Scholar] [CrossRef]
- Agrestini, S.; Saini, N.L.; Bianconi, G.; Bianconi, A. The strain of CuO2 lattice: The second variable for the phase diagram of cuprate perovskites. J. Phys. A Math. Gen. 2003, 36, 9133–9142. [Google Scholar] [CrossRef]
- Campi, G.; Ricci, A.; Poccia, N.; Fratini, M.; Bianconi, A. X-rays Writing/Reading of charge density waves in the CuO2 plane of a simple cuprate superconductor. Condens. Matter 2017, 2, 26. [Google Scholar] [CrossRef]
- Campi, G.; Bianconi, A. Evolution of complexity in out-of-equilibrium systems by time-resolved or space-resolved synchrotron radiation techniques. Condens. Matter 2019, 4, 32. [Google Scholar] [CrossRef]
- Phillips, J.C. Physics of High-Tc Superconductors; Academic: Boston, MA, USA, 1989. [Google Scholar]
- Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 2001, 410, 63–64. [Google Scholar] [CrossRef]
- Bauer, E.; Paul, C.; Berger, S.; Majumdar, S.; Michor, H.; Giovannini, M.; Saccone, A.; Bianconi, A. Thermal conductivity of superconducting MgB2. J. Phys. Condens. Mat. 2001, 13, L487–L493. [Google Scholar] [CrossRef][Green Version]
- Agrestini, S.; Di Castro, D.; Sansone, M.; Saini, N.L.; Saccone, A.; De Negri, S.; Giovannini, M.; Colapietro, M.; Bianconi, A. High Tc superconductivity in a critical range of micro-strain and charge density in diborides. J. Phys. Condens. Matter 2001, 13, 11689–11695. [Google Scholar] [CrossRef]
- Agrestini, S.; Metallo, C.; Filippi, M.; Siminelli, L.; Campi, G.; Sanipoli, C.; Liarokapis, E.; De Negri, S.; Giovannini, M.; Saccone, A.; et al. Substitution of Sc for Mg in MgB2: Effects on transition temperature and Kohn anomaly. Phys. Rev. B 2004, 70, 134514. [Google Scholar] [CrossRef]
- Palmisano, V.; Simonelli, L.; Puri, A.; Fratini, M.; Busby, Y.; Parisiades, P.; Liarokapis, E.; Brunelli, M.; Fitch, A.N.; Bianconi, A. Controlling mesoscopic phase separation near electronic topological transitions via quenched disorder in ternary diborides. J. Phys. Condens. Matter 2008, 20, 434222. [Google Scholar] [CrossRef]
- Simonelli, L.; Palmisano, V.; Fratini, M.; Paridiades, P.; Lampakis, D.; Liarokapis, E.; Bianconi, A. Isotope effect on the E2g phonon and mesoscopic phase separation near the electronic topological transition in Mg1−xAlxB2. Phys. Rev. B 2009, 80, 014520. [Google Scholar] [CrossRef]
- Parisiades, P.; Liarokapis, E. Lattice effects in diborides. J. Supercond. Nov. Magn. 2011, 24, 49–56. [Google Scholar] [CrossRef]
- Hebard, A.F.; Rosseinsky, M.J.; Haddon, R.C.; Murphy, D.W.; Glarum, S.H.; Palstra, T.T.M.; Ramirez, A.P.; Kortan, A.R. Superconductivity at 18 K in potassium doped C60. Nature 1991, 350, 600–601. [Google Scholar] [CrossRef]
- Zhou, O.; Zhu, Q.; Fischer, J.E.; Coustel, N.; Vaughan, G.B.M.; Heiney, P.A.; McCauley, J.P., Jr.; Smith, A.B. Compressibility of M3C60 fullerene superconductors: Relation between Tc and lattice parameter. Science 1992, 255, 833–835. [Google Scholar] [CrossRef]
- Palstra, T.T.M.; Zhou, O.; Iwasa, Y.; Sulewski, P.E.; Fleming, R.M.; Zegarski, B.R. Superconductivity at 40K in cesium doped C60. Solid State Commum. 1995, 93, 327–330. [Google Scholar] [CrossRef]
- Drozdov, A.P.; Eremets, M.I.; Troyan, I.A.; Ksenofontov, V.; Shylin, S.I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 2015, 525, 73–76. [Google Scholar] [CrossRef]
- Bianconi, A.; Jarlborg, T. Superconductivity above the lowest Earth temperature in pressurized sulfur hydride. Eur. Phys. Lett. 2015, 112, 37001. [Google Scholar] [CrossRef]
- Jarlborg, T.; Bianconi, A. Breakdown of the Migdal approximation at Lifshitz transitions with giant zero-point motion in the H3S superconductor. Sci. Rep. 2016, 6, 24816. [Google Scholar] [CrossRef]
- Bianco, R.; Errea, I.; Calandra, M.; Mauri, F. High-pressure phase diagram of hydrogen and deuterium sulfides from first principles: Structural and vibrational properties including quantum and anharmonic effects. Phys. Rev. B 2018, 97, 214101. [Google Scholar] [CrossRef]
- Bianconi, A.; Saini, N.L.; Lanzara, A.; Missori, M.; Rossetti, T.; Oyanagi, H.; Yamaguchi, H.; Oka, K.; Ito, T. Determination of the lattice Distortions in the CuO2 Plane of La1.85Sr0.15CuO4. Phys. Rev. Lett. 1996, 76, 3412–3415. [Google Scholar] [CrossRef] [PubMed]
- Lanzara, A.; Zhao, G.M.; Saini, N.L.; Bianconi, A.; Conder, K.; Keller, H.; Müller, K.A. Oxygen-isotope shift of the charge-stripe ordering temperature in La2−xSrxCuO4 from x-ray absorption spectroscopy. J. Phys. Condens. Matter 1999, 11, L541–L546. [Google Scholar] [CrossRef]
- Lanzara, A.; Bogdanov, P.V.; Zhou, X.J.; Kellar, S.A.; Feng, D.L.; Lu, E.D.; Yoshida, T.; Eisaki, H.; Fujimori, A.; Kishio, K.; et al. Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors. Nature 2001, 412, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.X.; Lanzara, A.; Ishihara, S.; Nagaosa, N. Role of the electron-phonon interaction in the strongly correlated cuprate superconductors. Philos. Mag. B 2002, 82, 1349–1368. [Google Scholar] [CrossRef]
- Gweon, G.H.; Sasagawa, T.; Zhou, S.Y.; Graf, J.; Takagi, H.; Lee, D.H.; Lanzara, A. An unusual isotope effect in a high-transition-temperature superconductor. Nature 2004, 430, 187–190. [Google Scholar] [CrossRef]
- Graf, J.; Jozwiak, C.; Smallwood, C.L.; Eisaki, H.; Kaindl, R.A.; Lee, D.H.; Lanzara, A. Nodal quasiparticle meltdown in ultrahigh-resolution pump-probe angle-resolved photoemission. Nat. Phys. 2011, 7, 805–809. [Google Scholar] [CrossRef]
- Perali, A.; Innocenti, D.; Valletta, A.; Bianconi, A. Anomalous isotope effect near a 2.5 Lifshitz transition in a multi-band multi-condensate superconductor made of a superlattice of stripes. Supercond. Sci. Technol. 2012, 25, 124002. [Google Scholar] [CrossRef]
- Guguchia, Z.; Khasanov, R.; Bendele, M.; Pomjakushina, E.; Conder, K.; Shengelaya, A.; Keller, H. Negative Oxygen Isotope Effect on the Static Spin Stripe Order in Superconducting La2−xBaxCuO4 (x = 1/8) Observed by Muon-Spin Rotation. Phys. Rev. Lett. 2014, 113, 057002. [Google Scholar] [CrossRef]
- Bendele, M.; von Rohr, F.; Guguchia, Z.; Pomjakushina, E.; Conder, K.; Bianconi, A.; Simon, A.; Bussmann-Holder, A.; Keller, H. Evidence for strong lattice effects as revealed from huge unconventional oxygen isotope effects on the pseudogap temperature in La2−xSrxCuO4. Phys. Rev. B 2017, 95, 014514. [Google Scholar] [CrossRef]
- Caivano, R.; Fratini, M.; Poccia, N.; Ricci, A.; Puri, A.; Ren, Z.A.; Dong, X.L.; Yang, J.; Lu, W.; Zhao, Z.X.; et al. Feshbach resonance and mesoscopic phase separation near a quantum critical point in multiband FeAs-based superconductors. Supercond. Sci. Technol. 2008, 22, 014004. [Google Scholar] [CrossRef]
- Ricci, A.; Poccia, N.; Campi, G.; Joseph, B.; Arrighetti, G.; Barba, L.; Reynolds, M.; Burghammer, M.; Takeya, H.; Mizuguchi, Y.; et al. Nanoscale phase separation in the iron chalcogenide superconductor K0.8Fe1.6Se2 as seen via scanning nanofocused x-ray diffraction. Phys. Rev. B 2011, 84, 060511. [Google Scholar] [CrossRef]
- Bianconi, A. Quantum materials: Shape resonances in superstripes. Nat. Phys. 2013, 9, 536–537. [Google Scholar] [CrossRef]
- Bendele, M.; Barinov, A.; Joseph, B.; Innocenti, D.; Iadecola, A.; Bianconi, A.; Takeya, H.; Mizuguchi, Y.; Takano, T.; Noji, T.; et al. Spectromicroscopy of electronic phase separation in KxFe2−ySe2 superconductor. Sci. Rep. 2014, 4, 5592. [Google Scholar] [CrossRef]
- Ricci, A.; Poccia, N.; Joseph, B.; Innocenti, D.; Campi, G.; Zozulya, A.; Westermeier, A.; Schavkan, A.; Coneri, F.; Bianconi, A.; et al. Direct observation of nanoscale interface phase in the superconducting chalcogenide KxFe2−ySe2 with intrinsic phase separation. Phys. Rev. B 2015, 91, 020503. [Google Scholar] [CrossRef]
- Simonelli, L.; Mizokawa, T.; Sala, M.M.; Takeya, H.; Mizuguchi, Y.; Takano, Y.; Garbarino, G.; Monaco, G.; Saini, N.L. Temperature dependence of iron local magnetic moment in phase-separated superconducting chalcogenide. Phys. Rev. B 2014, 90, 214516. [Google Scholar] [CrossRef]
- Mangelis, P.; Lei, H.; McDonnell, M.; Feygenson, M.; Petrovic, C.; Bozin, E.; Lappas, A. On the Nanoscale Structure of KxFe2−yCh2 (Ch=S, Se): A Neutron Pair Distribution Function View. Condens. Matter 2018, 3, 20. [Google Scholar] [CrossRef]
- Bianconi, A. Multiplet splitting of final-state configurations in x-ray-absorption spectrum of metal VO2: Effect of core-hole-screening, electron correlation, and metal-insulator transition. Phys. Rev. B 1982, 26, 2741. [Google Scholar] [CrossRef]
- Marcelli, A.; Coreno, M.; Stredansky, M.; Xu, W.; Zou, C.; Fan, L.; Wangsheng, C.; Wei, S.; Cossaro, A.; Ricci, A.; et al. Nanoscale phase separation and lattice complexity in VO2: The metal-insulator transition investigated by XANES via Auger electron yield at the vanadium L23-edge and resonant photoemission. Condens. Matter 2017, 2, 38. [Google Scholar] [CrossRef]
- Gioacchino, D.; Marcelli, A.; Puri, A.; Zou, C.; Fan, L.; Zeitler, U.; Bianconi, A. Metastability phenomena in VO2 thin films. Condens. Matter 2017, 2, 10. [Google Scholar] [CrossRef]
- Corder, S.N.G.; Jiang, J.; Chen, X.; Kittiwatanakul, S.; Tung, I.C.; Zhu, Y.; Zhang, J.; Bechtel, H.; Martin, M.C.; Carr, L.G.; et al. Controlling phase separation in vanadium dioxide thin films via substrate engineering. Phys. Rev. B 2017, 96, 161110. [Google Scholar] [CrossRef]
- Vidas, L.; Günther, C.M.; Miller, T.A.; Pfau, B.; Perez-Salinas, D.; Martínez, E.; Schneider, M.; Guhrs, E.; Gargiani, P.; Valvidares, M.; et al. Imaging Nanometer Phase Coexistence at Defects During the Insulator-Metal Phase Transformation in VO2 Thin Films by Resonant Soft X-ray Holography. Nano Lett. 2018, 18, 3449–3453. [Google Scholar] [CrossRef] [PubMed]
- Grandi, F.; Amaricci, A.; Fabrizio, M. Unraveling the Mott-Peierls intrigue in Vanadium dioxide. arXiv 2019, arXiv:1906.10632. [Google Scholar]
- Thomsen, C. Light Scattering in Solids; Cardona, M., Guntherodt, G., Eds.; Springer-Verlag: Berlin, Germany, 1991; Volume VI, pp. 285–359. [Google Scholar]
- Iliev, M.N.; Thomsen, C.; Hadjiev, V.; Cardona, M. Resonant Raman scattering of oxygen-deficient YBa2Cu3O7−δ: Evidence for the coexistence of ortho-I, ortho-II, and tetragonal microstructures. Phys. Rev. B 1993, 47, 12341–12344. [Google Scholar] [CrossRef]
- Poulakis, N.; Palles, D.; Liarokapis, E.; Conder, K.; Kaldis, E.; Müller, K.A. Phase separation and softening of the O2,3 in-phase mode in the YBa2Cu3Ox superconductors. Phys. Rev. B 1996, 53, 219–220. [Google Scholar] [CrossRef]
- Mihailovic, D.; McCarty, K.F.; Ginley, D.S. Anharmonic properties and the two-particle continuum in the Raman spectra of YBa2Cu3O6.9, TlBa2CaCu2O7, and Tl2Ba2CaCu2O8. Phys. Rev. B 1993, 47, 8910–8916. [Google Scholar] [CrossRef]
- Ruani, G.; Taliani, C.; Muccini, M.; Conder, K.; Kaldis, M.; Keller, H.; Zech, D.; Muller, K.A. Apex anharmonicity observed by Raman scattering in 18O substituted YBa2Cu3O6+x. Physica C 1994, 226, 101–105. [Google Scholar] [CrossRef]
- Palles, D.; Poulakis, N.; Liarokapis, E.; Conder, K.; Kaldis, E.; Muller, K.A. Raman study of the oxygen anharmonicity in YBa2Cu3Ox (6.4 < x < 7.0) superconductors. Phys. Rev. B 1996, 54, 6721–6727. [Google Scholar]
- Cooper, S.L.; Slakey, F.; Klein, M.V.; Rice, J.P.; Bukowski, E.D.; Ginsberg, D.M. Gap anisotropy and phonon self-energy effects in single-crystal YBa2Cu3O7−δ. Phys. Rev. B 1988, 38, 11934–11937. [Google Scholar] [CrossRef]
- Deveraux, T.P.; Einzel, D.; Stadlober, B.; Hackl, R.; Leach, D.H.; Neumeier, J.J. Electronic Raman scattering in high-Tc superconductors: A probe of dx2−y2 pairing. Phys. Rev. Lett. 1994, 72, 396–399. [Google Scholar] [CrossRef] [PubMed]
- Heyen, E.T.; Wegerer, R.; Schonherr, E.; Cardona, M. Raman study of the coupling of crystal-field excitations to phonons in NdBa2Cu3O7−δ. Phys. Rev. B 1991, 44, 10195–10205. [Google Scholar] [CrossRef] [PubMed]
- Parisiades, P.; Lampakis, D.; Palles, D.; Liarokapis, E.; Zhigadlo, N.D.; Katrysh, S.; Karpinski, J. Two-mode behavior for the E2g broad band in Mg(B1−xCx)2. Phys. C 2008, 468, 1064–1069. [Google Scholar] [CrossRef]
- Calamiotou, M.; Margiolaki, I.; Gantis, A.; Siranidi, E.; Ren, Z.A.; Zhao, Z.X.; Liarokapis, E. Lattice anomalies in the FeAs4 tetrahedra of the NdFeAsO0.85 superconductor that disappear at Tc. Eur. Phys. Lett. 2010, 91, 57005. [Google Scholar] [CrossRef][Green Version]
- Liarokapis, E.; Calamiotou, M.; Zhigadlo, N.D.; Katrysh, S.; Karpinski, J. Non-linera lattice response of Sm oxypnictides to hydrostatic pressure. J. Phys. Chem. Solid 2013, 74, 1465–1469. [Google Scholar] [CrossRef][Green Version]
- Calamiotou, M.; Lampakis, D.; Zhigadlo, N.D.; Katrysh, S.; Karpinski, J.; Fitch, A.; Tsiaklaganos, P.; Liarokapis, E. Local lattice distortions vs. structural phase transition in NdFeAsO1−xFx. Phys. C 2016, 527, 55–62. [Google Scholar] [CrossRef][Green Version]
- Thomsen, C.; Cardona, M. Physical Properties of High Temperature Superconductors; Ginsberg, D.M., Ed.; World Scientific: Singapore, 1994; p. 409. [Google Scholar]
- Plakida, N.M. High Temperature Superconductivity; Springer-Verlag: Berlin, Germany, 1995. [Google Scholar]
- FacFarlane, R.M.; Rosen, H.J.; Engler, E.M.; Jacowitz, R.D.; Lee, V.Y. Raman study of the effect of oxygen stoichiometry on the phonon spectrum of the high-Tc superconductor YBa2Cu3Ox. Phys. Rev. B 1988, 38, 284–289. [Google Scholar] [CrossRef]
- Wille, L.T.; Berera, A.; deFontaine, D. Thermodynamics of oxygen ordering in YBa2Cu3Oz. Phys. Rev. Lett. 1988, 60, 1065–1068. [Google Scholar] [CrossRef]
- Cava, R.J.; Hewat, A.W.; Hewat, E.A.; Batlogg, B.; Marezio, M.; Rabe, K.M.; Krajewski, J.J.; Peck, W.F.; Rupp, L.W., Jr. Structural anomalies, oxygen ordering and superconductivity in oxygen deficient Ba2YCu3Ox. Physica C 1990, 165, 419–433. [Google Scholar] [CrossRef]
- Schleger, P.; Casalta, H.; Hadfield, R.; Poulsen, H.F.; von Zimmermann, M.; Andersen, N.H.; Schneider, J.R.; Liang, R.; Dosanjh, P.; Hardy, W.N. Observation of ortho-III correlations by neutron and hard X-ray scattering in an untwined YBa2Cu3O6.77 single crystal. Physica C 1995, 241, 103–110. [Google Scholar] [CrossRef]
- Dagotto, E. Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 1992, 66, 763–841. [Google Scholar] [CrossRef]
- Heyen, E.T.; Kircher, J.; Cardona, M. Resonant Raman scattering in insulating YBa2Cu3O6 as a probe of its electronic structure. Phys. Rev. B 1992, 45, 3037–3047, and references therein. [Google Scholar] [CrossRef] [PubMed]
- Denisov, V.N.; Taliani, C.; Mal’shukov, A.G.; Burlakov, V.M.; Schonherr, E.; Ruani, G. Infrared excited Raman scattering and photoluminescence of deep intragap states in semiconducting YBa2Cu3O6+x. Phys. Rev. B 1993, 48, 16714–16721. [Google Scholar] [CrossRef] [PubMed]
- Mesot, J.; Allenspach, P.; Staub, U.; Furrer, A.; Mutka, H. Neutron spectroscopic evidence for cluster formation and percolative superconductivity in ErBa2Cu3Ox. Phys. Rev. Lett. 1993, 70, 865–868. [Google Scholar] [CrossRef]
- Liarokapis, E. Raman spectroscopy, structural modifications and phase transitions in the high-temperature superconductors. J. Supercond. 2000, 13, 889–893. [Google Scholar] [CrossRef]
- Pintschovius, L.; Reichardt, W. Inelastic neutron scattering studies of the lattice vibrations of high Tc compounds. In Physical Properties of High Temperature Superconductors; Ginsberg, D.M., Ed.; World Scientific: Singapore, 1994; pp. 295–374. [Google Scholar]
- Reyes-Gasga, J.; Krekels, T.; van Tendeloo, G.; van Landuyt, J.; Amelinckx, S.; Bruggink, W.H.M.; Verweij, H. 3-d vacancy ordered superstructures in “homogeneous” YBa2Cu3O7−δ. Physica C 1989, 159, 831–848. [Google Scholar] [CrossRef]
- Alario-Franco, M.A.; Chaillout, C.; Capponi, J.J.; Chenavas, J.; Marezio, M. A family of non-stoichiometric phases based on Ba2YCu3O7−δ (0 ≤ δ ≤ 1). Physica C 1988, 156, 455–460. [Google Scholar] [CrossRef]
- Sonntag, R.; Hohlwein, D.; Brückel, T.; Collin, G. First observation of superstructure reflections by neutron diffraction due to oxygen ordering in YBa2Cu3O6.35. Phys. Rev. Lett. 1991, 66, 1497–1500. [Google Scholar] [CrossRef]
- Zimmermann, V.M.; Schneider, J.R.; Frello, T.; Andersen, N.H.; Madsen, J.; Käll, M.; Poulsen, H.F.; Liang, R.; Dosanjh, P.; Hardy, W.N. Oxygen-ordering superstructures in underdoped YBa2Cu3O6+x studied by hard x-ray diffraction. Phys. Rev. B 2003, 68, 104515. [Google Scholar] [CrossRef]
- Ricci, A.; Poccia, N.; Campi, G.; Coneri, F.; Caporale, A.S.; Innocenti, D.; Burghammer, M.V.; Zimmermann, M.; Bianconi, A. Multiscale distribution of oxygen puddles in 1/8 doped YBa2Cu3O6.67. Sci. Rep. 2013, 3, 2383. [Google Scholar] [CrossRef]
- Ricci, A.; Poccia, N.; Campi, G.; Coneri, F.; Barba, L.; Arrighetti, G.; Polentarutti, M.; Burghammer, M.; Sprung, M.V.; Zimmermann, M.; et al. Networks of superconducting nano-puddles in 1/8 doped YBa2Cu3O6.5+y controlled by thermal manipulation. New J. Phys. 2014, 16, 053030. [Google Scholar] [CrossRef]
- Campi, G.; Ricci, A.; Poccia, N.; Bianconi, A. Imaging Spatial Ordering of the Oxygen Chains in YBa2Cu3O6+y at the Insulator-to-Metal Transition. J. Supercond. Nov. Mater. 2014, 27, 987–990. [Google Scholar] [CrossRef]
- Rohler, J.; Loeffen, P.W.; Mullender, S.; Conder, K.; Kaldis, E. Local structure studies of the underdoped-overdoped transition in YBa2Cu3Ox. In High-Tc Superconductivity 1996: Ten Years after the Discovery; Kaldis, E., Liarokapis, E., Muller, K.A., Eds.; NATO ASI Series; Kluwer Academic Publ.: Dordrecht, The Netherlands, 1997; pp. 469–502. [Google Scholar]
- Conder, K.; Zech, D.; Kruger, C.H.; Kaldis, E.; Keller, H.; Hewat, A.W.; Jilek, E. Indications for a phase separation in YBa2Cu3O7−x. In Phase Separation in Cuprate Superconductors; Sigmund, E., Muller, K.A., Eds.; Springer: Berlin/Herdelberg, Germany, 1994; pp. 210–224. [Google Scholar]
- Kaldis, E.; Röhler, J.; Liarokapis, E.; Poulakis, N.; Conder, K.; Loeffen, P.W. A displacive structural transformation in the CuO2 planes of YBa2Cu3Ox at the underdoped-overdoped phase separation line. Phys. Rev. Lett. 1997, 79, 4894–4897. [Google Scholar] [CrossRef]
- Calamiotou, M.; Gantis, A.; Palles, D.; Lampakis, D.; Liarokapis, E.; Koufoudakis, A. Phase separation and internal strains in the mixed La0.5R0.5Ba2Cu3Oy compounds (R = rare-earth element). Phys. Rev. B 1998, 58, 15238–15246. [Google Scholar] [CrossRef]
- Bogachev, G.; Abrashev, M.; Iliev, M.N.; Poulakis, N.; Liarokapis, E.; Mitros, C.; Koufoudakis, A.; Psyharis, V. Raman study of R0.5Pr0.5Ba2Cu3O7−δ. Phys. Rev. B 1994, 49, 12151–12158. [Google Scholar] [CrossRef] [PubMed]
- Palles, D.; Liarokapis, E.; Leventouri, T.H.; Chakoumakos, B.C. The effect of Ca substitution on the structure and the Raman active phonons in Y1−xCaxBa2Cu3O7−δ. J. Phys. Condens. Matter 1998, 10, 2515–2524. [Google Scholar] [CrossRef]
- Friedl, B.; Thomsen, C.; Cardona, M. Determination of the superconducting gap in RBa2Cu3O7−δ. Phys. Rev. Lett. 1990, 65, 915–918. [Google Scholar] [CrossRef]
- Gantis, A.; Calamiotou, M.; Palles, D.; Lampakis, D.; Liarokapis, E. Phase formation and lattice strain in superconducting compound Y1−xLaxBa2Cu3Oy (0 ≤ x ≤ 1). Phys. Rev. B 2003, 68, 064502. [Google Scholar] [CrossRef]
- Calamiotou, M.; Gantis, A.; Margiolaki, I.; Palles, D.; Siranidi, E.; Liarokapis, E. Phase separation, microstructure and superconductivity in the Y1−xPrxBa2Cu3Oy compounds. J. Condens. Matter 2008, 20, 395224. [Google Scholar] [CrossRef]
- Rosen, H.J.; Macfarlane, R.M.; Engler, E.M.; Lee, V.Y.; Jacowitz, R.D. Systematic Raman study of effects of rare-earth substitution on the lattice modes of high Tc superconductors. Phys. Rev. 1988, 38, 2460–2465. [Google Scholar] [CrossRef]
- Chang, I.F.; Mitra, S.S. Long wavelength optical phonons in mixed crystals. Adv. Phys. 1971, 20, 359–404. [Google Scholar] [CrossRef]
- Röhler, J.; Friedrich, C.; Granzow, T.; Kaldis, E.; Böttger, G. High Temperature Superconductivity; AIP Conf. Proc. No. 483; Barnes, S.E., Ed.; AIP: New York, NY, USA, 1999; pp. 320–323. [Google Scholar]
- Lampakis, D.; Liarokapis, E.; Karpinski, J.; Panagopoulos, C.; Nishizaki, T. Local lattice distortions and phase separation in cuprates. J. Supercond. 2004, 17, 121–125. [Google Scholar] [CrossRef]
- Liarokapis, E.; Lampakis, D.; Palles, D.; Karpinski, J.; Panagopoulos, C. A Raman view of lattice distortions an charge transfer in cuprates. J. Phys. Chem. Solid 2006, 67, 2065–2071. [Google Scholar] [CrossRef]
- Lampakis, D.; Palles, D.; Liarokapis, E.; Kazakov, S.M.; Karpinski, J. Hydrostatic pressure induced phase separation in the YBa2Cu4O8 superconductor. J. Phys. Rev. B 2005, 72, 014539. [Google Scholar] [CrossRef]
- Osada, M.; Kakihana, M.; Käll, M.; Börjesson, L. Pressure-induced effects in high-Tc superconductors: Raman scattering as a probe of charge-lattice dynamics under high pressure. Physica C 2001, 357–360, 142–145. [Google Scholar] [CrossRef]
- Liarokapis, E.; Lampakis, D.; Panagopoulos, C.; Nishizaki, T. High pressure study of Bi-2212. High Press. Res. 2003, 23, 111–115. [Google Scholar] [CrossRef]
- Orenstein, J.; Millis, A.J. Advances in the Physics of high-temperature superconductivity. Science 2000, 288, 468–474. [Google Scholar] [CrossRef]
- Lampakis, D.; Liarokapis, E.; Panagopoulos, C. Micro-Raman evidence for topological charge order across the superconducting dome of La2−xSrxCuO4. Phys. Rev. B 2006, 73, 174518. [Google Scholar] [CrossRef]
- Liarokapis, E.; Lampakis, D.; Nishizaki, T.; Panagopoulos, C. Raman studies of the high pressure effects in high Tc superconductors. High Press. Res. 2000, 18, 109–116. [Google Scholar] [CrossRef]
- Koch, U.; Lotter, N.; Wittig, J.; Assmus, W.; Gegenheimer, B.; Winzer, K. Pressure dependence of Tc for single crystal YBa2Cu3O7−x up to 10 GPa. Solid State Commum. 1988, 67, 959–963. [Google Scholar] [CrossRef]
- Scholtz, J.J.; van Eenige, E.N.; Wijngaarden, R.J.; Griessen, R. Pressure dependence of Tc and Hc2 of YBa2Cu3O8. Phys. Rev. B 1992, 45, 3077–3082. [Google Scholar] [CrossRef] [PubMed]
- Calamiotou, M.; Gantis, A.; Siranidi, E.; Lampakis, D.; Karpinski, J.; Liarokapis, E. Pressure-induced lattice instabilities and superconductivity in YBa2Cu4O8 and optimally doped YBa2Cu3O7−δ. Phys. Rev. B 2009, 80, 214517. [Google Scholar] [CrossRef]
- Karpinski, J.; Kazakov, S.M.; Angst, M.; Mironov, A.; Mali, M.; Roos, J. Influence of Sr substitution on the structure, charge distribution, and critical temperature of Y(Ba1−xSrx)2Cu4O8 single crystals. Phys. Rev. B 2001, 64, 094518. [Google Scholar] [CrossRef]
- Calamiotou, M.; Gantis, A.; Lampakis, D.; Siranidi, E.; Liarokapis, E.; Margiolaki, I.; Conder, K. Pressure-induced phase separation in the Y123 superconductor. Eur. Phys. Lett. 2009, 85, 26004. [Google Scholar] [CrossRef]
- Kenichi, T. Evaluation of the hydrostaticity of a helium-pressure medium with powder x-ray diffraction techniques. J. Appl. Phys. 2001, 89, 662–668. [Google Scholar]
- Calamiotou, M.; Parisiades, P.; Siranidi, E.; Lampakis, D.; Conder, K.; Liarokapis, E. Pressure induced lattice effects in pure and near optimally doped La2−xSrxCuO4. Physica C 2019, 565, 1353516. [Google Scholar] [CrossRef]
- Ohtani, T.; Himeda, Y.; Norimatsu, Y.; Akiyama, N. Tc increase of Bi2212 induced by exposure to organic liquids or by photocatalytic effect using TiO2. Bull. Okayama Univ. Sci. 2016, 52, 35–44. [Google Scholar]
- Raghuveer, V.; Thampi, R.; Xanthopoulos, N.; Mathieu, H.J.; Viswanathan, B. Rare earth cuprates as electrocatalysts for ethanol oxidation. Solid State Ion. 2001, 140, 263–274. [Google Scholar] [CrossRef]
- Gupta, M.; Gupta, R. Pressure dependence of the hole concentration in superconducting La1.85Sr0.15CuO4. Physica C 1991, 173, 381–386. [Google Scholar] [CrossRef]
- Ganguly, P.; Shah, N.; Phadke, M.; Ramaswamy, V.; Mulla, I.S. Deviations from Vegard’s law: Charges in the c-axis parameter in La2−xSrxCuO4−d in relation to the insulator-superconductor-metal transition. Phys. Rev. B 1993, 47, 991–995. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liarokapis, E. Probing Phase Separation and Local Lattice Distortions in Cuprates by Raman Spectroscopy. Condens. Matter 2019, 4, 87. https://doi.org/10.3390/condmat4040087
Liarokapis E. Probing Phase Separation and Local Lattice Distortions in Cuprates by Raman Spectroscopy. Condensed Matter. 2019; 4(4):87. https://doi.org/10.3390/condmat4040087
Chicago/Turabian StyleLiarokapis, Efthymios. 2019. "Probing Phase Separation and Local Lattice Distortions in Cuprates by Raman Spectroscopy" Condensed Matter 4, no. 4: 87. https://doi.org/10.3390/condmat4040087
APA StyleLiarokapis, E. (2019). Probing Phase Separation and Local Lattice Distortions in Cuprates by Raman Spectroscopy. Condensed Matter, 4(4), 87. https://doi.org/10.3390/condmat4040087