Proximity-Induced Superconducting States of Magnetically Doped 3D Topological Insulators with High Bulk Insulation
Abstract
1. Introduction
2. Results and Discussion
2.1. Crystal Growth and Characterization
2.2. Junction Fabrication and Transport Properties
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sato, M.; Fujimoto, S. Majorana fermions and topology in superconductors. J. Phys. Soc. Jpn. 2016, 85, 1–32. [Google Scholar] [CrossRef]
- Fu, L.; Kane, C.L. Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 2008, 100, 096407. [Google Scholar] [CrossRef] [PubMed]
- Linder, J.; Tanaka, Y.; Yokoyama, T.; Sudbø, A.; Nagaosa, N. Unconventional superconductivity on a topological insulator. Phys. Rev. Lett. 2010, 104, 067001. [Google Scholar] [CrossRef] [PubMed]
- Majorana, E.; Maiani, L. A symmetric theory of electrons and positrons. Ettore Majorana Sci. Pap. 2006, 201–233. [Google Scholar] [CrossRef]
- Kashiwaya, S.; Kashiwaya, H.; Saitoh, K.; Mawatari, Y.; Tanaka, Y. Tunneling spectroscopy of topological superconductors. Phys. E Low-Dimens. Syst. Nanostruct. 2014, 55, 25–29. [Google Scholar] [CrossRef]
- Kashiwaya, S.; Tanaka, Y. Tunnelling effects on surface bound states in unconventional superconductors. Rep. Prog. Phys. 2000, 63, 1641–1724. [Google Scholar] [CrossRef]
- Tanaka, Y.; Sato, M.; Nagaosa, N. Symmetry and topology in superconductors—Odd-frequency pairing and edge states. J. Phys. Soc. Jpn. 2012, 81, 011013. [Google Scholar] [CrossRef]
- Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. (N. Y.) 2006, 321, 2–111. [Google Scholar] [CrossRef]
- Nayak, C.; Simon, S.H.; Stern, A.; Freedman, M.; Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 2008, 80, 1083–1159. [Google Scholar] [CrossRef]
- Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 2012, 75, 076501. [Google Scholar] [CrossRef]
- Beenakker, C.W.J. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 2011, 4, 113–136. [Google Scholar] [CrossRef]
- Das, A.; Ronen, Y.; Most, Y.; Oreg, Y.; Heiblum, M.; Shtrikman, H. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 2012, 8, 887–895. [Google Scholar] [CrossRef]
- Rokhinson, L.P.; Liu, X.; Furdyna, J.K. The fractional a.c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles. Nat. Phys. 2012, 8, 795–799. [Google Scholar] [CrossRef]
- Mourik, V.; Zuo, K.; Frolov, S.M.; Plissard, S.R.; Bakkers, E.P.A.M.; Kouwenhoven, L.P. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices. Science 2012, 336, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Bocquillon, E.; Deacon, R.S.; Wiedenmann, J.; Leubner, P.; Klapwijk, T.M.; Brüne, C.; Ishibashi, K.; Buhmann, H.; Molenkamp, L.W. Gapless Andreev bound states in the quantum spin Hall insulator HgTe. Nat. Nanotechnol. 2017, 12, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Wiedenmann, J.; Bocquillon, E.; Deacon, R.S.; Hartinger, S.; Herrmann, O.; Klapwijk, T.M.; Maier, L.; Ames, C.; Brüne, C.; Gould, C.; et al. 4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions. Nat. Commun. 2016, 7, 10303. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, T.; He, J.; Wang, H.W.; Zhang, H.; Liu, H.C.; Yi, Y.; Wu, C.; Law, K.T.; He, H.; et al. Origin of bias-independent conductance plateaus and zero-bias conductance peaks in Bi2Se3/NbSe2 hybrid structures. Phys. Rev. B 2017, 96, 075107. [Google Scholar] [CrossRef]
- Xu, J.P.; Wang, M.X.; Liu, Z.L.; Ge, J.F.; Yang, X.; Liu, C.; Xu, Z.A.; Guan, D.; Gao, C.L.; Qian, D.; et al. Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett. 2015, 114, 017001. [Google Scholar] [CrossRef]
- Charpentier, S.; Galletti, L.; Kunakova, G.; Arpaia, R.; Song, Y.; Baghdadi, R.; Wang, S.M.; Kalaboukhov, A.; Olsson, E.; Tafuri, F.; et al. Induced unconventional superconductivity on the surface states of Bi2Te3 topological insulator. Nat. Commun. 2017, 8, 6–13. [Google Scholar] [CrossRef]
- Tanaka, Y.; Yokoyama, T.; Nagaosa, N. Manipulation of the Majorana Fermion, Andreev Reflection, and Josephson Current on Topological Insulators. Phys. Rev. Lett. 2009, 103, 107002. [Google Scholar] [CrossRef]
- Yokoyama, T. Josephson and proximity effects on the surface of a topological insulator. Phys. Rev. B 2012, 86, 075410. [Google Scholar] [CrossRef]
- Burset, P.; Lu, B.; Tkachov, G.; Tanaka, Y.; Hankiewicz, E.M. Superconducting proximity effect in three-dimensional topological insulators in the presence of a magnetic field. Phys. Rev. B 2015, 92, 205424. [Google Scholar] [CrossRef]
- Park, M.J.; Yang, J.; Kim, Y.; Gilbert, M.J. Fulde-Ferrell states in inverse proximity-coupled magnetically doped topological heterostructures. Phys. Rev. B 2017, 96, 064518. [Google Scholar] [CrossRef]
- Yano, R.; Koyanagi, M.; Kashiwaya, H.; Tsumura, K.; Hirose, H.; Asano, Y.; Sasagawa, T.; Kashiwaya, S. Unusual Superconducting Proximity Effect in Magnetically Doped Topological Josephson Junctions. arXiv, 2018; arXiv:1805.10435v1. [Google Scholar]
- Jia, S.; Ji, H.; Fuccillo, M.K.; Charles, M.E.; Xiong, J.; Ong, N.P.; Cava, R.J. Low-carrier-concentration crystals of the topological insulator Bi2Te2Se. Phys. Rev. B 2011, 84, 235206. [Google Scholar] [CrossRef]
- Ren, Z.; Taskin, A.A.; Sasaki, S.; Segawa, K.; Ando, Y. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys. Rev. B 2010, 82, 241306(R). [Google Scholar] [CrossRef]
- Xiong, J.; Petersen, A.C.; Qu, D.; Hor, Y.S.; Cava, R.J.; Ong, N.P. Quantum oscillations in a topological insulator Bi2Te2Se with large bulk resistivity (6 Ω cm). Physica E 2012, 44, 917–920. [Google Scholar] [CrossRef]
- Mi, J.; Bremholm, M.; Bianchi, M.; Borup, K.; Johnsen, S.; Søndergaard, M.; Guan, D.; Hatch, R.C.; Hofmann, P.; Iversen, B.B. Phase Separation and Bulk p-n Transition in Single Crystals of Bi2Te2Se Topological Insulator. Adv. Mater. 2013, 25, 889–893. [Google Scholar] [CrossRef]
- Farag, B.S.; Abou el Soud, A.M.; Zayed, H.A.; Gad, S.A. Transport Properties of Ranspot Properties of the Quaternary Systems of Bi-Sb-Te-Se Systems. J. Ovonic Res. 2015, 6, 267–275. [Google Scholar]
- Soud, A.M.A.E.L.; Farag, B.S.; Farag, I.S.A.; Gad, S.A.; Zayed, H.A.; State, S. Crystal Structure and Optical Properties of Quaternary Systems of Bi-Sb-Te-Se. Fizika 2008, 17, 15–28. [Google Scholar]
- Chen, Y.L.; Chu, J.; Analytis, J.G.; Liu, Z.K.; Igarashi, K.; Kuo, H.; Qi, X.L.; Mo, S.K.; Moore, R.G.; Lu, D.H.; et al. Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator. Science 2010, 329, 659–662. [Google Scholar] [CrossRef]
- Xu, Y.; Miotkowski, I.; Liu, C.; Tian, J.; Nam, H.; Alidoust, N. Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nat. Phys. 2014, 10, 956–963. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, D.; Angevaare, J.R.; Luigjes, H.; Frantzeskakis, E.; de Jong, N.; Heumen, E.; van Bay, T.V.; Zwartsenberg, B.; Huang, Y.K.; et al. Low carrier concentration crystals of the topological insulator Bi2−xSbxTe3−ySey: A magnetotransport study. New J. Phys. 2014, 16, 123035. [Google Scholar] [CrossRef]
- Arakane, T.; Sato, T.; Souma, S.; Kosaka, K.; Nakayama, K.; Komatsu, M.; Takahashi, T.; Ren, Z.; Segawa, K.; Ando, Y. Tunable Dirac cone in the topological insulator Bi2−xSbxTe3−ySey. Nat. Commun. 2012, 3, 636. [Google Scholar] [CrossRef]
- Motto, N.F. The Resistance and Therm oelectric Properties of the Transition Metals. Proc. R. Soc. A 1936, 54, 368–382. [Google Scholar]
- Ye, J.T.; Zhang, Y.J.; Akashi, R.; Bahramy, M.S.; Arita, R.; Iwasa, Y. Superconducting Dome in a Gate-Tuned Band Insulator. Science 2012, 338, 1193–1197. [Google Scholar] [CrossRef]
- Stehno, M.P.; Hendrickx, N.W.; Snelder, M.; Scholten, T.; Huang, Y.K.; Golden, M.S.; Brinkman, A. Conduction spectroscopy of a proximity induced superconducting topological insulator. Semicond. Sci. Technol. 2017, 32, 94001. [Google Scholar] [CrossRef]
- Blonder, G.E.; Tinkham, M.; Klapwijk, T.M. Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 1982, 25, 4515–4532. [Google Scholar] [CrossRef]
- Yang, F.; Qu, F.; Shen, J.; Ding, Y.; Chen, J.; Ji, Z.; Liu, G.; Fan, J.; Yang, C.; Fu, L.; et al. Proximity-effect-induced superconducting phase in the topological insulator Bi2Se3. Phys. Rev. B 2012, 86, 134504. [Google Scholar] [CrossRef]
- Dai, W.; Richardella, A.; Du, R.; Zhao, W.; Liu, X.; Liu, C.X.; Huang, S.-H.; Sankar, R.; Chou, F.; Samarth, N.; et al. Proximity-effect-induced Superconducting Gap in Topological Surface States—A Point Contact Spectroscopy Study of NbSe2/Bi2Se3 Superconductor-Topological Insulator Heterostructures. Sci. Rep. 2017, 7, 7631. [Google Scholar] [CrossRef]
- Koren, G.; Kirzhner, T.; Lahoud, E.; Chashka, K.B.; Kanigel, A. Proximity-induced superconductivity in topological Bi2Te2Se and Bi2Se3 films: Robust zero-energy bound state possibly due to Majorana fermions. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 84, 224521. [Google Scholar] [CrossRef]
- Yamashiro, M.; Tanaka, Y.; Kashiwaya, S. Theory of tunneling spectroscopy in superconducting Sr2RuO4. Phys. Rev. B 1997, 56, 7847–7850. [Google Scholar] [CrossRef]
- Cheng, Q.; Jin, B. Temperature dependence of differential conductance in normal-metal/chiral triplet superconductor junctions: The gap symmetry of Sr2RuO4. Phys. C Supercond. Its Appl. 2010, 470, 37–42. [Google Scholar] [CrossRef]
- Soodchomshom, B. Magnetic gap effect on the tunneling conductance in a topological insulator ferromagnet/superconductor junction. Phys. Lett. A 2010, 374, 3561–3566. [Google Scholar] [CrossRef]
- Li, H.; Yang, X. Tunneling conductance in topological insulator ferromagnet/p-wave superconductor junctions. Solid State Commun. 2012, 152, 1655–1659. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yano, R.; Hirose, H.T.; Tsumura, K.; Yamamoto, S.; Koyanagi, M.; Kanou, M.; Kashiwaya, H.; Sasagawa, T.; Kashiwaya, S. Proximity-Induced Superconducting States of Magnetically Doped 3D Topological Insulators with High Bulk Insulation. Condens. Matter 2019, 4, 9. https://doi.org/10.3390/condmat4010009
Yano R, Hirose HT, Tsumura K, Yamamoto S, Koyanagi M, Kanou M, Kashiwaya H, Sasagawa T, Kashiwaya S. Proximity-Induced Superconducting States of Magnetically Doped 3D Topological Insulators with High Bulk Insulation. Condensed Matter. 2019; 4(1):9. https://doi.org/10.3390/condmat4010009
Chicago/Turabian StyleYano, Rikizo, Hishiro T. Hirose, Kohei Tsumura, Shuhei Yamamoto, Masao Koyanagi, Manabu Kanou, Hiromi Kashiwaya, Takao Sasagawa, and Satoshi Kashiwaya. 2019. "Proximity-Induced Superconducting States of Magnetically Doped 3D Topological Insulators with High Bulk Insulation" Condensed Matter 4, no. 1: 9. https://doi.org/10.3390/condmat4010009
APA StyleYano, R., Hirose, H. T., Tsumura, K., Yamamoto, S., Koyanagi, M., Kanou, M., Kashiwaya, H., Sasagawa, T., & Kashiwaya, S. (2019). Proximity-Induced Superconducting States of Magnetically Doped 3D Topological Insulators with High Bulk Insulation. Condensed Matter, 4(1), 9. https://doi.org/10.3390/condmat4010009