Proximity-Induced Superconducting States of Magnetically Doped 3D Topological Insulators with High Bulk Insulation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Growth and Characterization
2.2. Junction Fabrication and Transport Properties
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sato, M.; Fujimoto, S. Majorana fermions and topology in superconductors. J. Phys. Soc. Jpn. 2016, 85, 1–32. [Google Scholar] [CrossRef]
- Fu, L.; Kane, C.L. Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 2008, 100, 096407. [Google Scholar] [CrossRef] [PubMed]
- Linder, J.; Tanaka, Y.; Yokoyama, T.; Sudbø, A.; Nagaosa, N. Unconventional superconductivity on a topological insulator. Phys. Rev. Lett. 2010, 104, 067001. [Google Scholar] [CrossRef] [PubMed]
- Majorana, E.; Maiani, L. A symmetric theory of electrons and positrons. Ettore Majorana Sci. Pap. 2006, 201–233. [Google Scholar] [CrossRef]
- Kashiwaya, S.; Kashiwaya, H.; Saitoh, K.; Mawatari, Y.; Tanaka, Y. Tunneling spectroscopy of topological superconductors. Phys. E Low-Dimens. Syst. Nanostruct. 2014, 55, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Kashiwaya, S.; Tanaka, Y. Tunnelling effects on surface bound states in unconventional superconductors. Rep. Prog. Phys. 2000, 63, 1641–1724. [Google Scholar] [CrossRef]
- Tanaka, Y.; Sato, M.; Nagaosa, N. Symmetry and topology in superconductors—Odd-frequency pairing and edge states. J. Phys. Soc. Jpn. 2012, 81, 011013. [Google Scholar] [CrossRef]
- Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. (N. Y.) 2006, 321, 2–111. [Google Scholar] [CrossRef] [Green Version]
- Nayak, C.; Simon, S.H.; Stern, A.; Freedman, M.; Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 2008, 80, 1083–1159. [Google Scholar] [CrossRef] [Green Version]
- Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 2012, 75, 076501. [Google Scholar] [CrossRef] [Green Version]
- Beenakker, C.W.J. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 2011, 4, 113–136. [Google Scholar] [CrossRef]
- Das, A.; Ronen, Y.; Most, Y.; Oreg, Y.; Heiblum, M.; Shtrikman, H. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 2012, 8, 887–895. [Google Scholar] [CrossRef]
- Rokhinson, L.P.; Liu, X.; Furdyna, J.K. The fractional a.c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles. Nat. Phys. 2012, 8, 795–799. [Google Scholar] [CrossRef]
- Mourik, V.; Zuo, K.; Frolov, S.M.; Plissard, S.R.; Bakkers, E.P.A.M.; Kouwenhoven, L.P. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices. Science 2012, 336, 1003–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bocquillon, E.; Deacon, R.S.; Wiedenmann, J.; Leubner, P.; Klapwijk, T.M.; Brüne, C.; Ishibashi, K.; Buhmann, H.; Molenkamp, L.W. Gapless Andreev bound states in the quantum spin Hall insulator HgTe. Nat. Nanotechnol. 2017, 12, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Wiedenmann, J.; Bocquillon, E.; Deacon, R.S.; Hartinger, S.; Herrmann, O.; Klapwijk, T.M.; Maier, L.; Ames, C.; Brüne, C.; Gould, C.; et al. 4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions. Nat. Commun. 2016, 7, 10303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Zhou, T.; He, J.; Wang, H.W.; Zhang, H.; Liu, H.C.; Yi, Y.; Wu, C.; Law, K.T.; He, H.; et al. Origin of bias-independent conductance plateaus and zero-bias conductance peaks in Bi2Se3/NbSe2 hybrid structures. Phys. Rev. B 2017, 96, 075107. [Google Scholar] [CrossRef]
- Xu, J.P.; Wang, M.X.; Liu, Z.L.; Ge, J.F.; Yang, X.; Liu, C.; Xu, Z.A.; Guan, D.; Gao, C.L.; Qian, D.; et al. Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett. 2015, 114, 017001. [Google Scholar] [CrossRef]
- Charpentier, S.; Galletti, L.; Kunakova, G.; Arpaia, R.; Song, Y.; Baghdadi, R.; Wang, S.M.; Kalaboukhov, A.; Olsson, E.; Tafuri, F.; et al. Induced unconventional superconductivity on the surface states of Bi2Te3 topological insulator. Nat. Commun. 2017, 8, 6–13. [Google Scholar] [CrossRef]
- Tanaka, Y.; Yokoyama, T.; Nagaosa, N. Manipulation of the Majorana Fermion, Andreev Reflection, and Josephson Current on Topological Insulators. Phys. Rev. Lett. 2009, 103, 107002. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, T. Josephson and proximity effects on the surface of a topological insulator. Phys. Rev. B 2012, 86, 075410. [Google Scholar] [CrossRef]
- Burset, P.; Lu, B.; Tkachov, G.; Tanaka, Y.; Hankiewicz, E.M. Superconducting proximity effect in three-dimensional topological insulators in the presence of a magnetic field. Phys. Rev. B 2015, 92, 205424. [Google Scholar] [CrossRef] [Green Version]
- Park, M.J.; Yang, J.; Kim, Y.; Gilbert, M.J. Fulde-Ferrell states in inverse proximity-coupled magnetically doped topological heterostructures. Phys. Rev. B 2017, 96, 064518. [Google Scholar] [CrossRef]
- Yano, R.; Koyanagi, M.; Kashiwaya, H.; Tsumura, K.; Hirose, H.; Asano, Y.; Sasagawa, T.; Kashiwaya, S. Unusual Superconducting Proximity Effect in Magnetically Doped Topological Josephson Junctions. arXiv, 2018; arXiv:1805.10435v1. [Google Scholar]
- Jia, S.; Ji, H.; Fuccillo, M.K.; Charles, M.E.; Xiong, J.; Ong, N.P.; Cava, R.J. Low-carrier-concentration crystals of the topological insulator Bi2Te2Se. Phys. Rev. B 2011, 84, 235206. [Google Scholar] [CrossRef]
- Ren, Z.; Taskin, A.A.; Sasaki, S.; Segawa, K.; Ando, Y. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys. Rev. B 2010, 82, 241306(R). [Google Scholar] [CrossRef]
- Xiong, J.; Petersen, A.C.; Qu, D.; Hor, Y.S.; Cava, R.J.; Ong, N.P. Quantum oscillations in a topological insulator Bi2Te2Se with large bulk resistivity (6 Ω cm). Physica E 2012, 44, 917–920. [Google Scholar] [CrossRef]
- Mi, J.; Bremholm, M.; Bianchi, M.; Borup, K.; Johnsen, S.; Søndergaard, M.; Guan, D.; Hatch, R.C.; Hofmann, P.; Iversen, B.B. Phase Separation and Bulk p-n Transition in Single Crystals of Bi2Te2Se Topological Insulator. Adv. Mater. 2013, 25, 889–893. [Google Scholar] [CrossRef]
- Farag, B.S.; Abou el Soud, A.M.; Zayed, H.A.; Gad, S.A. Transport Properties of Ranspot Properties of the Quaternary Systems of Bi-Sb-Te-Se Systems. J. Ovonic Res. 2015, 6, 267–275. [Google Scholar]
- Soud, A.M.A.E.L.; Farag, B.S.; Farag, I.S.A.; Gad, S.A.; Zayed, H.A.; State, S. Crystal Structure and Optical Properties of Quaternary Systems of Bi-Sb-Te-Se. Fizika 2008, 17, 15–28. [Google Scholar]
- Chen, Y.L.; Chu, J.; Analytis, J.G.; Liu, Z.K.; Igarashi, K.; Kuo, H.; Qi, X.L.; Mo, S.K.; Moore, R.G.; Lu, D.H.; et al. Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator. Science 2010, 329, 659–662. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Miotkowski, I.; Liu, C.; Tian, J.; Nam, H.; Alidoust, N. Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nat. Phys. 2014, 10, 956–963. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Wu, D.; Angevaare, J.R.; Luigjes, H.; Frantzeskakis, E.; de Jong, N.; Heumen, E.; van Bay, T.V.; Zwartsenberg, B.; Huang, Y.K.; et al. Low carrier concentration crystals of the topological insulator Bi2−xSbxTe3−ySey: A magnetotransport study. New J. Phys. 2014, 16, 123035. [Google Scholar] [CrossRef]
- Arakane, T.; Sato, T.; Souma, S.; Kosaka, K.; Nakayama, K.; Komatsu, M.; Takahashi, T.; Ren, Z.; Segawa, K.; Ando, Y. Tunable Dirac cone in the topological insulator Bi2−xSbxTe3−ySey. Nat. Commun. 2012, 3, 636. [Google Scholar] [CrossRef]
- Motto, N.F. The Resistance and Therm oelectric Properties of the Transition Metals. Proc. R. Soc. A 1936, 54, 368–382. [Google Scholar]
- Ye, J.T.; Zhang, Y.J.; Akashi, R.; Bahramy, M.S.; Arita, R.; Iwasa, Y. Superconducting Dome in a Gate-Tuned Band Insulator. Science 2012, 338, 1193–1197. [Google Scholar] [CrossRef]
- Stehno, M.P.; Hendrickx, N.W.; Snelder, M.; Scholten, T.; Huang, Y.K.; Golden, M.S.; Brinkman, A. Conduction spectroscopy of a proximity induced superconducting topological insulator. Semicond. Sci. Technol. 2017, 32, 94001. [Google Scholar] [CrossRef]
- Blonder, G.E.; Tinkham, M.; Klapwijk, T.M. Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 1982, 25, 4515–4532. [Google Scholar] [CrossRef]
- Yang, F.; Qu, F.; Shen, J.; Ding, Y.; Chen, J.; Ji, Z.; Liu, G.; Fan, J.; Yang, C.; Fu, L.; et al. Proximity-effect-induced superconducting phase in the topological insulator Bi2Se3. Phys. Rev. B 2012, 86, 134504. [Google Scholar] [CrossRef]
- Dai, W.; Richardella, A.; Du, R.; Zhao, W.; Liu, X.; Liu, C.X.; Huang, S.-H.; Sankar, R.; Chou, F.; Samarth, N.; et al. Proximity-effect-induced Superconducting Gap in Topological Surface States—A Point Contact Spectroscopy Study of NbSe2/Bi2Se3 Superconductor-Topological Insulator Heterostructures. Sci. Rep. 2017, 7, 7631. [Google Scholar] [CrossRef]
- Koren, G.; Kirzhner, T.; Lahoud, E.; Chashka, K.B.; Kanigel, A. Proximity-induced superconductivity in topological Bi2Te2Se and Bi2Se3 films: Robust zero-energy bound state possibly due to Majorana fermions. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 84, 224521. [Google Scholar] [CrossRef]
- Yamashiro, M.; Tanaka, Y.; Kashiwaya, S. Theory of tunneling spectroscopy in superconducting Sr2RuO4. Phys. Rev. B 1997, 56, 7847–7850. [Google Scholar] [CrossRef]
- Cheng, Q.; Jin, B. Temperature dependence of differential conductance in normal-metal/chiral triplet superconductor junctions: The gap symmetry of Sr2RuO4. Phys. C Supercond. Its Appl. 2010, 470, 37–42. [Google Scholar] [CrossRef]
- Soodchomshom, B. Magnetic gap effect on the tunneling conductance in a topological insulator ferromagnet/superconductor junction. Phys. Lett. A 2010, 374, 3561–3566. [Google Scholar] [CrossRef]
- Li, H.; Yang, X. Tunneling conductance in topological insulator ferromagnet/p-wave superconductor junctions. Solid State Commun. 2012, 152, 1655–1659. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yano, R.; Hirose, H.T.; Tsumura, K.; Yamamoto, S.; Koyanagi, M.; Kanou, M.; Kashiwaya, H.; Sasagawa, T.; Kashiwaya, S. Proximity-Induced Superconducting States of Magnetically Doped 3D Topological Insulators with High Bulk Insulation. Condens. Matter 2019, 4, 9. https://doi.org/10.3390/condmat4010009
Yano R, Hirose HT, Tsumura K, Yamamoto S, Koyanagi M, Kanou M, Kashiwaya H, Sasagawa T, Kashiwaya S. Proximity-Induced Superconducting States of Magnetically Doped 3D Topological Insulators with High Bulk Insulation. Condensed Matter. 2019; 4(1):9. https://doi.org/10.3390/condmat4010009
Chicago/Turabian StyleYano, Rikizo, Hishiro T. Hirose, Kohei Tsumura, Shuhei Yamamoto, Masao Koyanagi, Manabu Kanou, Hiromi Kashiwaya, Takao Sasagawa, and Satoshi Kashiwaya. 2019. "Proximity-Induced Superconducting States of Magnetically Doped 3D Topological Insulators with High Bulk Insulation" Condensed Matter 4, no. 1: 9. https://doi.org/10.3390/condmat4010009
APA StyleYano, R., Hirose, H. T., Tsumura, K., Yamamoto, S., Koyanagi, M., Kanou, M., Kashiwaya, H., Sasagawa, T., & Kashiwaya, S. (2019). Proximity-Induced Superconducting States of Magnetically Doped 3D Topological Insulators with High Bulk Insulation. Condensed Matter, 4(1), 9. https://doi.org/10.3390/condmat4010009