Exponents of Spectral Functions in the One-Dimensional Bose Gas
Abstract
:1. Introduction
2. Model and Bethe Ansatz Equation
2.1. The Model
2.2. Bethe Ansatz Equations
2.3. Dressed Energy Potential and Density
2.4. Particle and Hole Excitations
2.5. Group Velocities
2.6. Conformal Towers
2.7. Correlation Functions
2.8. Luttinger Parameter
3. Field Theory Model for the Luttinger Liquid with Mobile Impurity
4. Relation to the Bethe Ansatz Results
4.1. Densities
4.2. Energy
4.3. Integration Limits
4.4. Relation to Quantum Numbers
4.5. Relation of the Bethe Ansatz with the Field Theoretical Quantities
4.6. Agreement Between Phase Shifts From the Finite Size Corrections and the Shift Function
5. Conclusions
Funding
Conflicts of Interest
References
- Lieb, E.H.; Liniger, W. Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State. Phys. Rev. 2008, 130, 1605. [Google Scholar] [CrossRef]
- Lieb, E.H. Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum. Phys. Rev. 1963, 130, 1616. [Google Scholar] [CrossRef]
- Cazalilla, M.A. Bosonizing one-dimensional cold atomic gases. J. Phys. B At. Mol. Opt. Phys. 2004, 37, S1. [Google Scholar] [CrossRef]
- Luther, A.; Peschel, I. Single-particle states, Kohn anomaly, and pairing fluctuations in one dimension. Phys. Rev. B 1974, 9, 2911. [Google Scholar] [CrossRef]
- Haldane, F.D.W. ’Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C 1981, 14, 2585. [Google Scholar] [CrossRef]
- Imambekov, A.; Glazman, L.I. Exact Exponents of Edge Singularities in Dynamic Correlation Functions of 1D Bose Gas. Phys. Rev. Lett. 2008, 100, 206805. [Google Scholar] [CrossRef] [PubMed]
- Carmelo, J.M.P.; Sacramento, P.D. Exponents of the spectral functions and dynamical structure factor of the 1D Lieb-Liniger Bose gas. Ann. Phys. 2016, 369, 102. [Google Scholar] [CrossRef]
- Khodas, M.; Pustilnik, M.; Kamenev, A.; Glazman, L.I. Dynamics of excitations in a one-dimensional Bose liquid. Phys. Rev. Lett. 2007, 99, 110405. [Google Scholar] [CrossRef] [PubMed]
- Khodas, M.; Pustilnik, M.; Kamenev, A.; Glazman, L.I. Fermi-Luttinger liquid: Spectral function of interacting one-dimensional fermions. Phys. Rev. B 2007, 76, 155402. [Google Scholar] [CrossRef]
- Pereira, R.G.; White, S.R.; Affleck, I. Exact Edge Singularities and Dynamical Correlations in Spin-1/2 Chains. Phys. Rev. Lett. 2008, 100, 027206. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.G.; White, S.R.; Affleck, I. Spectral function of spinless fermions on a one-dimensional lattice. Phys. Rev. B 2009, 79, 165113. [Google Scholar] [CrossRef] [Green Version]
- Cheianov, V.V.; Pustilnik, M. Threshold Singularities in the Dynamic Response of Gapless Integrable Models. Phys. Rev. Lett. 2008, 100, 126403. [Google Scholar] [CrossRef] [PubMed]
- Imambekov, A.; Glazman, L.I. Phenomenology of One-Dimensional Quantum Liquids Beyond the Low-Energy Limit. Phys. Rev. Lett. 2009, 102, 126405. [Google Scholar] [CrossRef] [PubMed]
- Imambekov, A.; Glazman, L.I. Universal Theory of Nonlinear Luttinger Liquids. Science 2009, 323, 228. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.L.; Imambekov, A.; Glazman, L.I. Fate of 1D Spin-Charge Separation Away from Fermi Points. Phys. Rev. Lett. 2010, 104, 116403. [Google Scholar] [CrossRef] [PubMed]
- Essler, F.H.L. Threshold singularities in the one-dimensional Hubbard model. Phys. Rev. B 2010, 81, 205120. [Google Scholar] [CrossRef]
- Imambekov, A.; Schmidt, T.L.; Glazman, L.I. One-dimensional quantum liquids: Beyond the Luttinger liquid paradigm. Rev. Mod. Phys. 2012, 84, 1253. [Google Scholar] [CrossRef]
- Schlottmann, P.; Zvyagin, A.A. Threshold singularities in a Fermi gas with attractive potential in one dimension. Nucl. Phys. B 2015, 892, 269. [Google Scholar] [CrossRef] [Green Version]
- Ovchinnikov, A.A. Threshold singularities in the correlators of the one-dimensional models. J. Stat. Mech. 2016, 6, 063108. [Google Scholar] [CrossRef]
- Schlottmann, P. Threshold singularities in the one-dimensional supersymmetric boson-fermion gas mixture. Int. J. Mod. Phys. B 2018, 32, 1850221. [Google Scholar] [CrossRef]
- Noziéres, P.; de Dominicis, C.T. Singularities in the X-Ray Absorption and Emission of Metals. III. One-Body Theory Exact Solution. Phys. Rev. 1969, 178, 1097. [Google Scholar] [CrossRef]
- Schotte, K.D.; Schotte, U. Tomonaga’s Model and the Threshold Singularity of X-Ray Spectra of Metals. Phys. Rev. 1969, 182, 479. [Google Scholar] [CrossRef]
- Ogawa, T.; Furusaki, A.; Nagaosa, N. Fermi-edge singularity in one-dimensional systems. Phys. Rev. Lett. 1992, 68, 3638. [Google Scholar] [CrossRef] [PubMed]
- Castella, H.; Zotos, X. Exact calculation of spectral properties of a particle interacting with a one-dimensional fermionic system. Phys. Rev. B 1993, 47, 16186. [Google Scholar] [CrossRef]
- Sorella, S.; Parola, A. Spectral Properties of One Dimensional Insulators and Superconductors. Phys. Rev. Lett. 1996, 76, 4604. [Google Scholar] [CrossRef] [PubMed]
- Castro, N.A.H.; Fisher, M.P.A. Dynamics of a heavy particle in a Luttinger liquid. Phys. Rev. B 1996, 53, 9713. [Google Scholar] [CrossRef]
- Tsukamoto, Y.; Fujii, T.; Kawakami, N. Critical behavior of Tomonaga-Luttinger liquids with a mobile impurity. Phys. Rev. B 1997, 58, 3633. [Google Scholar] [CrossRef]
- Schlottmann, P.; Zvyagin, A.A. Integrable supersymmetric t-J model with magnetic impurity. Phys. Rev. B 1997, 55, 5027. [Google Scholar] [CrossRef]
- Schlottmann, P.; Zvyagin, A.A. Exact solution for a degenerate Anderson impurity in the U→∞ limit embedded into a correlated host. Eur. Phys. J. B 1998, 5, 325–335. [Google Scholar] [CrossRef]
- Balents, L. X-ray-edge singularities in nanotubes and quantum wires with multiple subbands. Phys. Rev. B 2000, 61, 4429. [Google Scholar] [CrossRef]
- Friedrich, A.; Kolezhuk, A.K.; McCulloch, I.P.; Schollwöck, U. Edge singularities in high-energy spectra of gapped one-dimensional magnets in strong magnetic fields. Phys. Rev. B 2007, 75, 094414. [Google Scholar] [CrossRef] [Green Version]
- Burovski, E.; Cheianov, V.; Gamayun, O.; Lychkovskiy, O. Momentum relaxation of a mobile impurity in a one-dimensional quantum gas. Phys. Rev. A 2014, 89, 041601. [Google Scholar] [CrossRef]
- Pustilnik, M.; Khodas, M.; Kamenev, A.; Glazman, L.I. Dynamic Response of One-Dimensional Interacting Fermions. Phys. Rev. Lett. 2006, 96, 196405. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.G.; Sirker, J.; Caux, J.S.; Hagemans, R.; Maillet, J.M.; White, S.R.; Affleck, I. Dynamical Spin Structure Factor for the Anisotropic Spin-1/2 Heisenberg Chain. Phys. Rev. Lett. 2006, 96, 257202. [Google Scholar] [CrossRef] [PubMed]
- Zvonarev, M.B.; Cheianov, V.V.; Giamarchi, T. Spin Dynamics in a One-Dimensional Ferromagnetic Bose Gas. Phys. Rev. Lett. 2007, 99, 240404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zvonarev, M.B.; Cheianov, V.V.; Giamarchi, T. Dynamical Properties of the One-Dimensional Spin-1/2 Bose-Hubbard Model near a Mott-Insulator to Ferromagnetic-Liquid Transition. Phys. Rev. Lett. 2009, 103, 110401. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.N.; Yang, C.P. Thermodynamics of a One-Dimensional System of Bosons with Repulsive Delta-Function Interaction. J. Math. Phys. 1969, 10, 1115. [Google Scholar] [CrossRef]
- Schlottmann, P. Exact Results for Highly Correlated Electron Systems in One Dimension. Int. J. Mod. Phys. B 1997, 11, 355. [Google Scholar] [CrossRef]
- Izergin, A.G.; Korepin, V.E.; Reshetikhin, N.Y. Conformal dimensions in Bethe ansatz solvable models. J. Phys. A 1989, 22, 2615. [Google Scholar] [CrossRef]
- Frahm, H.; Korepin, V.E. Critical exponents for the one-dimensional Hubbard model. Phys. Rev. B 1990, 42, 10553. [Google Scholar] [CrossRef]
- Woynarovich, F. Finite-size effects in a non-half-filled Hubbard chain. J. Phys. A 1989, 22, 4243. [Google Scholar] [CrossRef]
- Frahm, H.; Palacios, G. Correlation functions of one-dimensional Bose-Fermi mixtures. Phys. Rev. A 2005, 72, 061604. [Google Scholar] [CrossRef]
- Anderson, P.W. Infrared catastrophe in Fermi gases with local scattering potentials. Phys. Rev. Lett. 1967, 18, 1049. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlottmann, P. Exponents of Spectral Functions in the One-Dimensional Bose Gas. Condens. Matter 2018, 3, 35. https://doi.org/10.3390/condmat3040035
Schlottmann P. Exponents of Spectral Functions in the One-Dimensional Bose Gas. Condensed Matter. 2018; 3(4):35. https://doi.org/10.3390/condmat3040035
Chicago/Turabian StyleSchlottmann, Pedro. 2018. "Exponents of Spectral Functions in the One-Dimensional Bose Gas" Condensed Matter 3, no. 4: 35. https://doi.org/10.3390/condmat3040035
APA StyleSchlottmann, P. (2018). Exponents of Spectral Functions in the One-Dimensional Bose Gas. Condensed Matter, 3(4), 35. https://doi.org/10.3390/condmat3040035