A Monte-Carlo Study on the Coupling of Magnetism and Ferroelectricity in the Hexagonal Multiferroic RMnO3
Abstract
:Author Contributions
Funding
Conflicts of Interest
References
- Spaldin, N.A. MATERIALS SCIENCE: The Renaissance of Magnetoelectric Multiferroics. Science 2005, 309, 191–192. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Goto, T.; Shintani, H.; Ishizaka, K.; Arima, T.; Tokura, Y. Magnetic Control of Ferroelectric Polarization. Nature 2003, 426, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Hur, N.; Park, S.; Sharma, P.A.; Ahn, J.S.; Guha, S.; Cheong, S.W. Electric Polarization Reversal and Memory in a Multiferroic Material Induced by Magnetic Fields. Nature 2004, 429, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Khomskii, D. Classifying Multiferroics: Mechanisms and Effects. Physics 2009, 2, 20. [Google Scholar] [CrossRef]
- Yakel, H.L., Jr.; Koehler, W.C.; Bertaut, E.F.; Forrat, E.F. On the Crystal Structure of the Manganese(III) Trioxides of the Heavy Lanthanides and Yttrium. Acta Crystallograph. 1963, 16, 957–962. [Google Scholar] [CrossRef]
- Choi, T.; Horibe, Y.; Yi, H.T.; Choi, Y.J.; Wu, W.; Cheong, S.W. Insulating Interlocked Ferroelectric and Structural Antiphase Domain Walls in Multiferroic YMnO3. Nat. Mater. 2010, 9, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Aikawa, Y.; Katsufuji, T.; Arima, T.; Kato, K. Effect of Mn Trimerization on the Magnetic and Dielectric Properties of Hexagonal YMnO3. Phys. Rev. B 2005, 71, 184418. [Google Scholar] [CrossRef]
- Tomuta, D.G.; Ramakrishnan, S.; Nieuwenhuys, G.J.; Mydosh, J.A. The Magnetic Susceptibility, Specific Heat and Dielectric Constant of Hexagonal YMnO3, LuMnO3 and ScMnO3. J. Phys. Condens. Matter 2001, 13, 4543–4552. [Google Scholar] [CrossRef]
- Katsufuji, T.; Mori, S.; Masaki, M.; Moritomo, Y.; Yamamoto, N.; Takagi, H. Dielectric and Magnetic Anomalies and Spin Frustration in Hexagonal RMnO3 (R = Y, Yb, and Lu). Phys. Rev. B 2001, 64, 104419. [Google Scholar] [CrossRef]
- Muñoz, A.; Alonso, J.A.; Martínez-Lope, M.J.; Casáis, M.T.; Martínez, J.L.; Fernández-Díaz, M.T. Magnetic Structure of Hexagonal RMnO3 (R = Y, Sc): Thermal Evolution From Neutron Powder Diffraction Data. Phys. Rev. B 2000, 62, 9498–9510. [Google Scholar] [CrossRef]
- Tian, W.; Tan, G.; Liu, L.; Zhang, J.; Winn, B.; Hong, T.; Fernandez-Baca, J.A.; Zhang, C.; Dai, P. Influence of Doping on the Spin Dynamics and Magnetoelectric Effect in Hexagonal Y0.7Lu0.3MnO3. Phys. Rev. B 2014, 89, 144417. [Google Scholar] [CrossRef]
- Fiebig, M.; Lottermoser, T.; Fröhlich, D.; Goltsev, A.V.; Pisarev, R.V. Observation of Coupled Magnetic and Electric Domains. Nature 2002, 419, 818–820. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, H.X.; Tian, H.F.; Ma, C.; Zhang, S.; Zhao, Y.G.; Li, J.Q. Scanning Secondary-Electron Microscopy on Ferroelectric Domains and Domain Walls in YMnO3. Appl. Phys. Lett. 2012, 100, 152903. [Google Scholar] [CrossRef]
- Lottermoser, T.; Lonkai, T.; Amann, U.; Hohlwein, D.; Ihringer, J.; Fiebig, M. Magnetic Phase Control by an Electric Field. Nature 2004, 430, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Chae, S.C.; Lee, N.; Horibe, Y.; Tanimura, M.; Mori, S.; Gao, B.; Carr, S.; Cheong, S.W. Direct Observation of the Proliferation of Ferroelectric Loop Domains and Vortex-Antivortex Pairs. Phys. Rev. Lett. 2012, 108, 167603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chae, S.C.; Horibe, Y.; Jeong, D.Y.; Lee, N.; Iida, K.; Tanimura, M.; Cheong, S.W. Evolution of the Domain Topology in a Ferroelectric. Phys. Rev. Lett. 2013, 110, 167601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowley, S.E.; Lonzarich, G.G. Ferroelectrics in a Twist. Nat. Phys. 2014, 10, 907–908. [Google Scholar] [CrossRef]
- Lin, S.; Wang, X.; Kamiya, Y.; Chern, G.W.; Fan, F.; Fan, D.; Casas, B.; Liu, Y.; Kiryukhin, V.; Zurek, W.H.; et al. Topological Defects as Relics of Emergent Continuous Symmetry and Higgs Condensation of Disorder in Ferroelectrics. Nat. Phys. 2014, 10, 970–977. [Google Scholar] [CrossRef]
- Kosterlitz, J.M.; Thouless, D.J. Ordering, Metastability and Phase Transitions in Two-dimensional Systems. J. Phys. C Solid State Phys. 1973, 6, 1181. [Google Scholar] [CrossRef]
- Cardy, J.L. General Discrete Planar Models in Two Dimensions: Duality Properties and Phase Diagrams. J. Phys. A Math. Gener. 1980, 13, 1507–1515. [Google Scholar] [CrossRef]
- Chern, G.W.; Tchernyshyov, O. Magnetic Charge and Ordering in Kagome Spin Ice. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2012, 370, 5718–5737. [Google Scholar] [CrossRef] [PubMed]
- Challa, M.S.; Landau, D.P. Critical Behavior of the Six-state Clock Model in Two Dimensions. Phys. Rev. B 1986, 33, 437–443. [Google Scholar] [CrossRef]
- Skulski, R. Superparaelectric Behaviours of Relaxor Ferroelectrics. Mater. Sci. Eng. B 1999, 64, 39–43. [Google Scholar] [CrossRef]
- Cross, L.E. Relaxor Ferroelectrics. Ferroelectrics 1987, 76, 241–267. [Google Scholar] [CrossRef]
- Skjærvø, S.H.; Meier, Q.; Feygenson, M.; Spaldin, N.A.; Billinge, S.J.L.; Bozin, E.S.; Selbach, S.M. Unconventional Order-disorder Phase Transition in Improper Ferroelectric Hexagonal Manganites. arXiv, 2017; arXiv:1707.09649. [Google Scholar]
- Wang, X.; Mostovoy, M.; Han, M.G.; Horibe, Y.; Aoki, T.; Zhu, Y.; Cheong, S.W. Unfolding of Vortices into Topological Stripes in a Multiferroic Material. Phys. Rev. Lett. 2014, 112, 247601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artyukhin, S.; Delaney, K.T.; Spaldin, N.A.; Mostovoy, M. Landau Theory of Topological Defects in Multiferroic Hexagonal Manganites. Nat. Mater. 2013, 13, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Poirier, M.; Laliberté, F.; Pinsard-Gaudart, L.; Revcolevschi, A. Magnetoelastic Coupling in Hexagonal Multiferroic YMnO3 Using Ultrasound Measurements. Phys. Rev. B 2007, 76, 174426. [Google Scholar] [CrossRef]
- Petit, S.; Moussa, F.; Hennion, M.; Pailhès, S.; Pinsard-Gaudart, L.; Ivanov, A. Spin Phonon Coupling in Hexagonal Multiferroic YMnO3. Phys. Rev. Lett. 2007, 99, 266604. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S.F.; Anderson, P.W. Theory of Spin Glasses. J. Phys. F Met. Phys. 1975, 5, 965. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, C.; Chern, G.-W.; Louca, D. A Monte-Carlo Study on the Coupling of Magnetism and Ferroelectricity in the Hexagonal Multiferroic RMnO3. Condens. Matter 2018, 3, 28. https://doi.org/10.3390/condmat3040028
Duan C, Chern G-W, Louca D. A Monte-Carlo Study on the Coupling of Magnetism and Ferroelectricity in the Hexagonal Multiferroic RMnO3. Condensed Matter. 2018; 3(4):28. https://doi.org/10.3390/condmat3040028
Chicago/Turabian StyleDuan, Chunruo, Gia-Wei Chern, and Despina Louca. 2018. "A Monte-Carlo Study on the Coupling of Magnetism and Ferroelectricity in the Hexagonal Multiferroic RMnO3" Condensed Matter 3, no. 4: 28. https://doi.org/10.3390/condmat3040028
APA StyleDuan, C., Chern, G. -W., & Louca, D. (2018). A Monte-Carlo Study on the Coupling of Magnetism and Ferroelectricity in the Hexagonal Multiferroic RMnO3. Condensed Matter, 3(4), 28. https://doi.org/10.3390/condmat3040028