# Effective Control of Chemical Potentials by Rabi Coupling with RF-Fields in Ultracold Mixtures

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Two-Species Mixtures Coupled by Rabi Coupling

#### 2.1. Fermions

#### 2.2. Bosons

#### 2.3. Trap Effects

#### 2.4. Comments on the Experimental Implementation

#### 2.5. Further Generalizations

## 3. Generalization to N Species

## 4. Two-Species Superfluidity in the Presence of Rabi Coupling

#### 4.1. Comparison at Mean-Field Level

#### 4.2. Disscusions

## 5. The Continuous Case

#### Gap Equations

## 6. Further Applications

#### 6.1. Time Modulation

#### 6.2. Spatial Modulations

## 7. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Bloch, I.; Dalibard, J.; Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys.
**2008**, 80, 885. [Google Scholar] [CrossRef] - Lewenstein, M.; Sanpera, A.; Ahufinger, V. Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Dalfovo, F.; Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys.
**1999**, 71, 463. [Google Scholar] [CrossRef] - Pethick, C.; Smith, H. Bose-Einstein Condensation in Dilute Gases; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Parish, M.M.; Marchetti, F.M.; Lamacraft, A.; Simons, B.D. Finite-temperature phase diagram of a polarized Fermi condensate. Nat. Phys.
**2007**, 3, 124–128. [Google Scholar] [CrossRef] - Sheehy, D.E.; Radzihovsky, L. BEC-BCS crossover, phase transitions and phase separation in polarized resonantly-paired superfluids. Ann. Phys.
**2007**, 322, 1790. [Google Scholar] [CrossRef] - Chevy, F.; Mora, C. Ultra-cold Polarized Fermi Gases. Rep. Prog. Phys.
**2010**, 73, 112401. [Google Scholar] [CrossRef] - Shin, Y.; Zwierlein, M.W.; Schunck, C.H.; Schirotzek, A.; Ketterle, W. Observation of Phase Separation in a Strongly Interacting Imbalanced Fermi Gas. Phys. Rev. Lett.
**2006**, 97, 030401. [Google Scholar] [CrossRef] [PubMed] - Zwierlein, M.W.; Schirotzek, A.; Schunck, C.H.; Ketterle, W. Fermionic Superfluidity with Imbalanced Spin Populations and the Quantum Phase Transition to the Normal State. Science
**2006**, 311, 492–496. [Google Scholar] [CrossRef] [PubMed] - Partridge, G.B.; Li, W.; Kamar, R.I.; LiBao, Y.; Hulet, R.G. Pairing and Phase Separation in a Polarized Fermi Gas. Science
**2006**, 311, 503–505. [Google Scholar] [CrossRef] [PubMed] - Nascimbene, S.; Navon, N.; Jiang, K.J.; Chevy, F.; Salomon, C. Exploring the thermodynamics of a universal fermi gas. Nature
**2010**, 463, 1057–1060. [Google Scholar] [CrossRef] [PubMed] - Mitra, D.; Brown, P.T.; Schaub, P.; Kondov, S.S.; Bakr, W.S. Phase separation and pair condensation in a spin-imbalanced 2D Fermi gas. Phys. Rev. Lett.
**2016**, 117, 093601. [Google Scholar] [CrossRef] [PubMed] - Yoshioka, D. The Quantum Hall Effect; Springer: New York, NY, USA, 2002. [Google Scholar]
- Bakr, W.S.; Gillen, J.I.; Peng, A.; Fölling, S.; Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature
**2009**, 462, 74–77. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Weitenberg, C.; Endres, M.; Sherson, J.F.; Cheneau, M.; Schauss, P.; Fukuhara, T.; Bloch, I.; Kuhr, S. Single-spin addressing in an atomic Mott insulator. Nature
**2011**, 471, 319–324. [Google Scholar] [CrossRef] [PubMed] - Williams, J.; Walser, R.; Cooper, J.; Cornell, E.; Holland, M. Nonlinear Josephson-type oscillations of a driven, two-component Bose-Einstein condensate. Phys. Rev. A
**1999**, 59, R31(R). [Google Scholar] [CrossRef] - Gupta, S.; Hadzibabic, Z.; Zwierlein, M.W.; Stan, C.A.; Dieckmann, K.; Schunck, C.H.; van Kempen, E.G.M.; Verhaar, B.J.; Ketterle, W. Radio-Frequency Spectroscopy of Ultracold Fermions. Science
**2003**, 300, 1723–1726. [Google Scholar] [CrossRef] [PubMed] - Smerzi, A.; Trombettoni, A.; Lopez-Arias, T.; Fort, C.; Maddaloni, P.; Minardi, F.; Inguscio, M. Macroscopic oscillations between two weakly coupled Bose-Einstein condensates. Eur. Phys. J. B
**2003**, 31, 457. [Google Scholar] [CrossRef] - Chen, Q.; He, Y.; Chien, C.-C.; Levin, K. Theory of radio frequency spectroscopy experiments in ultracold Fermi gases and their relation to photoemission in the cuprates. Rep. Prog. Phys.
**2009**, 72, 122501. [Google Scholar] [CrossRef] - Pieri, P.; Perali, A.; Strinati, G.C. Enhanced paraconductivity-like fluctuations in the radiofrequency spectra of ultracold Fermi atoms. Nat. Phys.
**2009**, 5, 736–740. [Google Scholar] [CrossRef] - Barbiero, L.; Abad, M.; Recati, A. Magnetic phase transition in coherently coupled Bose gases in optical lattices. Phys. Rev. A
**2016**, 93, 033645. [Google Scholar] [CrossRef] - Inguscio, M.; Fallani, L. Atomic Physics: Precise Measurements and Ultracold Matter; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Steck, D.A. Quantum and Atom Optics. Available online: http://steck.us/teaching (accessed on 11 April 2018).
- De Salvo, B.J.; Yan, M.; Mickelson, P.G.; de Escobar, Y.M.; Killian, T.C. Degenerate Fermi gas of (87)Sr. Phys. Rev. Lett.
**2010**, 105, 030402. [Google Scholar] [CrossRef] [PubMed] - Tey, M.K.; Stellmer, S.; Grimm, R.; Schreck, F. Double-degenerate Bose-Fermi mixture of strontium. Phys. Rev. A
**2010**, 82, 011608. [Google Scholar] [CrossRef] - Fukuhara, T.; Takasu, Y.; Kumakura, M.; Takahashi, Y. Degenerate Fermi gases of ytterbium. Phys. Rev. Lett.
**2007**, 98, 030401. [Google Scholar] [CrossRef] [PubMed] - Taie, S.; Takasu, Y.; Sugawa, S.; Yamazaki, R.; Tsujimoto, T.; Murakami, R.; Takahashi, Y. Realization of a SU(2) × SU(6) System of Fermions in a Cold Atomic Gas. Phys. Rev. Lett.
**2010**, 105, 190401. [Google Scholar] [CrossRef] [PubMed] - Gorshkov, A.V.; Hermele, M.; Gurarie, V.; Xu, C.; Julienne, P.S.; Ye, J.; Zoller, P.; Demler, E.; Lukin, M.D.; Rey, A.M. Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms. Nat. Phys.
**2010**, 6, 289–295. [Google Scholar] [CrossRef] - Cazalilla, M.A.; Rey, A.M. Ultracold Fermi gases with emergent SU(N) symmetry. Rep. Progr. Phys.
**2014**, 77, 124401. [Google Scholar] [CrossRef] [PubMed] - Pagano, G.; Mancini, M.; Cappellini, G.; Lombardi, P.; Schäfer, F.; Hu, H.; Liu, X.-J.; Catani, J.; Sias, C.; Inguscio, M.; et al. A one-dimensional liquid of fermions with tunable spin. Nat. Phys.
**2014**, 10, 198–201. [Google Scholar] [CrossRef] - Barros, J.C.P.; Lepori, L.; Trombettoni, A. Phase diagram and non-Abelian symmetry locking for fermionic mixtures with unequal interactions. Phys. Rev. A
**2017**, 96, 013603. [Google Scholar] [CrossRef] - Mancini, M.; Pagano, G.; Cappellini, G.; Livi, L.; Rider, M.; Catani, J.; Sias, C.; Zoller, P.; Inguscio, M.; Dalmonte, M.; et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science
**2015**, 349, 1510–1513. [Google Scholar] [CrossRef] [PubMed] - Lepori, L.; Trombettoni, A.; Vinci, W. Simulation of two-flavor symmetry-locking phases in ultracold fermionic mixtures. Europhys. Lett.
**2015**, 109, 50002. [Google Scholar] [CrossRef] - Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys.
**2008**, 80, 1215. [Google Scholar] [CrossRef] - Stamper-Kurn, D.M.; Ueda, M. Spinor Bose gases: Symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys.
**2013**, 85, 1191. [Google Scholar] [CrossRef] - Jimenez-Garcia, K.; LeBlanc, L.J.; Williams, R.A.; Beeler, M.C.; Qu, C.; Gong, M.; Zhang, C.; Spielman, I.B. Tunable Spin-Orbit Coupling via Strong Driving in Ultracold-Atom Systems. Phys. Rev. Lett.
**2015**, 114, 125301. [Google Scholar] [CrossRef] [PubMed] - Lepori, L.; Salasnich, L. Tunable zero and first sounds in ultracold Fermi gases with Rabi coupling. J. Stat. Mech.
**2017**, 2017, 043107. [Google Scholar] [CrossRef] - Abad, M.; Recati, A. A study of coherently coupled two-component Bose-Einstein Condensates. Eur. Phys. J. D
**2013**, 67, 148. [Google Scholar] [CrossRef] - Landau, L.D.; Lifshitz, E.M. Quantum Mechanics; Elsevier: New York, NY, USA, 1981. [Google Scholar]
- Annett, J.F. Superconductivity, Superfluids, and Condensates; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Pao, C.-H.; Wu, S.-T.; Yip, S.-K. Superfluid stability in BEC-BCS crossover. Phys. Rev. B
**2005**, 73, 132506. [Google Scholar] [CrossRef] - Levinsen, J.; Cooper, N.R.; Shlyapnikov, G.V. Topological px+ipy superfluid phase of fermionic polar molecules. Phys. Rev. A
**2011**, 84, 013603. [Google Scholar] [CrossRef] - Randeria, M. Bose-Einstein Condensation; Griffin, A., Snoke, D.W., Stringari, S., Eds.; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Zwerger, W. (Ed.) The BCS-BEC Crossover and Unitary Fermi Gas; Springer: New York, NY, USA, 2012. [Google Scholar]
- Randeria, M.; Duan, J.M.; Shieh, L.Y. Superconductivity in a two-dimensional Fermi gas: Evolution from Cooper pairing to Bose condensation. Phys. Rev. B
**1990**, 41, 327. [Google Scholar] [CrossRef] - Pagano, G.; University of Maryland, College Park, MD, USA. Personal communication, 2013.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lepori, L.; Maraga, A.; Celi, A.; Dell’Anna, L.; Trombettoni, A.
Effective Control of Chemical Potentials by Rabi Coupling with RF-Fields in Ultracold Mixtures. *Condens. Matter* **2018**, *3*, 14.
https://doi.org/10.3390/condmat3020014

**AMA Style**

Lepori L, Maraga A, Celi A, Dell’Anna L, Trombettoni A.
Effective Control of Chemical Potentials by Rabi Coupling with RF-Fields in Ultracold Mixtures. *Condensed Matter*. 2018; 3(2):14.
https://doi.org/10.3390/condmat3020014

**Chicago/Turabian Style**

Lepori, Luca, Anna Maraga, Alessio Celi, Luca Dell’Anna, and Andrea Trombettoni.
2018. "Effective Control of Chemical Potentials by Rabi Coupling with RF-Fields in Ultracold Mixtures" *Condensed Matter* 3, no. 2: 14.
https://doi.org/10.3390/condmat3020014