Effective Control of Chemical Potentials by Rabi Coupling with RF-Fields in Ultracold Mixtures
Abstract
:1. Introduction
2. Two-Species Mixtures Coupled by Rabi Coupling
2.1. Fermions
2.2. Bosons
2.3. Trap Effects
2.4. Comments on the Experimental Implementation
2.5. Further Generalizations
3. Generalization to N Species
4. Two-Species Superfluidity in the Presence of Rabi Coupling
4.1. Comparison at Mean-Field Level
4.2. Disscusions
5. The Continuous Case
Gap Equations
6. Further Applications
6.1. Time Modulation
6.2. Spatial Modulations
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bloch, I.; Dalibard, J.; Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 2008, 80, 885. [Google Scholar] [CrossRef]
- Lewenstein, M.; Sanpera, A.; Ahufinger, V. Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Dalfovo, F.; Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 1999, 71, 463. [Google Scholar] [CrossRef]
- Pethick, C.; Smith, H. Bose-Einstein Condensation in Dilute Gases; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Parish, M.M.; Marchetti, F.M.; Lamacraft, A.; Simons, B.D. Finite-temperature phase diagram of a polarized Fermi condensate. Nat. Phys. 2007, 3, 124–128. [Google Scholar] [CrossRef]
- Sheehy, D.E.; Radzihovsky, L. BEC-BCS crossover, phase transitions and phase separation in polarized resonantly-paired superfluids. Ann. Phys. 2007, 322, 1790. [Google Scholar] [CrossRef]
- Chevy, F.; Mora, C. Ultra-cold Polarized Fermi Gases. Rep. Prog. Phys. 2010, 73, 112401. [Google Scholar] [CrossRef]
- Shin, Y.; Zwierlein, M.W.; Schunck, C.H.; Schirotzek, A.; Ketterle, W. Observation of Phase Separation in a Strongly Interacting Imbalanced Fermi Gas. Phys. Rev. Lett. 2006, 97, 030401. [Google Scholar] [CrossRef] [PubMed]
- Zwierlein, M.W.; Schirotzek, A.; Schunck, C.H.; Ketterle, W. Fermionic Superfluidity with Imbalanced Spin Populations and the Quantum Phase Transition to the Normal State. Science 2006, 311, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Partridge, G.B.; Li, W.; Kamar, R.I.; LiBao, Y.; Hulet, R.G. Pairing and Phase Separation in a Polarized Fermi Gas. Science 2006, 311, 503–505. [Google Scholar] [CrossRef] [PubMed]
- Nascimbene, S.; Navon, N.; Jiang, K.J.; Chevy, F.; Salomon, C. Exploring the thermodynamics of a universal fermi gas. Nature 2010, 463, 1057–1060. [Google Scholar] [CrossRef] [PubMed]
- Mitra, D.; Brown, P.T.; Schaub, P.; Kondov, S.S.; Bakr, W.S. Phase separation and pair condensation in a spin-imbalanced 2D Fermi gas. Phys. Rev. Lett. 2016, 117, 093601. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, D. The Quantum Hall Effect; Springer: New York, NY, USA, 2002. [Google Scholar]
- Bakr, W.S.; Gillen, J.I.; Peng, A.; Fölling, S.; Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 2009, 462, 74–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weitenberg, C.; Endres, M.; Sherson, J.F.; Cheneau, M.; Schauss, P.; Fukuhara, T.; Bloch, I.; Kuhr, S. Single-spin addressing in an atomic Mott insulator. Nature 2011, 471, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.; Walser, R.; Cooper, J.; Cornell, E.; Holland, M. Nonlinear Josephson-type oscillations of a driven, two-component Bose-Einstein condensate. Phys. Rev. A 1999, 59, R31(R). [Google Scholar] [CrossRef]
- Gupta, S.; Hadzibabic, Z.; Zwierlein, M.W.; Stan, C.A.; Dieckmann, K.; Schunck, C.H.; van Kempen, E.G.M.; Verhaar, B.J.; Ketterle, W. Radio-Frequency Spectroscopy of Ultracold Fermions. Science 2003, 300, 1723–1726. [Google Scholar] [CrossRef] [PubMed]
- Smerzi, A.; Trombettoni, A.; Lopez-Arias, T.; Fort, C.; Maddaloni, P.; Minardi, F.; Inguscio, M. Macroscopic oscillations between two weakly coupled Bose-Einstein condensates. Eur. Phys. J. B 2003, 31, 457. [Google Scholar] [CrossRef]
- Chen, Q.; He, Y.; Chien, C.-C.; Levin, K. Theory of radio frequency spectroscopy experiments in ultracold Fermi gases and their relation to photoemission in the cuprates. Rep. Prog. Phys. 2009, 72, 122501. [Google Scholar] [CrossRef]
- Pieri, P.; Perali, A.; Strinati, G.C. Enhanced paraconductivity-like fluctuations in the radiofrequency spectra of ultracold Fermi atoms. Nat. Phys. 2009, 5, 736–740. [Google Scholar] [CrossRef]
- Barbiero, L.; Abad, M.; Recati, A. Magnetic phase transition in coherently coupled Bose gases in optical lattices. Phys. Rev. A 2016, 93, 033645. [Google Scholar] [CrossRef]
- Inguscio, M.; Fallani, L. Atomic Physics: Precise Measurements and Ultracold Matter; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Steck, D.A. Quantum and Atom Optics. Available online: http://steck.us/teaching (accessed on 11 April 2018).
- De Salvo, B.J.; Yan, M.; Mickelson, P.G.; de Escobar, Y.M.; Killian, T.C. Degenerate Fermi gas of (87)Sr. Phys. Rev. Lett. 2010, 105, 030402. [Google Scholar] [CrossRef] [PubMed]
- Tey, M.K.; Stellmer, S.; Grimm, R.; Schreck, F. Double-degenerate Bose-Fermi mixture of strontium. Phys. Rev. A 2010, 82, 011608. [Google Scholar] [CrossRef]
- Fukuhara, T.; Takasu, Y.; Kumakura, M.; Takahashi, Y. Degenerate Fermi gases of ytterbium. Phys. Rev. Lett. 2007, 98, 030401. [Google Scholar] [CrossRef] [PubMed]
- Taie, S.; Takasu, Y.; Sugawa, S.; Yamazaki, R.; Tsujimoto, T.; Murakami, R.; Takahashi, Y. Realization of a SU(2) × SU(6) System of Fermions in a Cold Atomic Gas. Phys. Rev. Lett. 2010, 105, 190401. [Google Scholar] [CrossRef] [PubMed]
- Gorshkov, A.V.; Hermele, M.; Gurarie, V.; Xu, C.; Julienne, P.S.; Ye, J.; Zoller, P.; Demler, E.; Lukin, M.D.; Rey, A.M. Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms. Nat. Phys. 2010, 6, 289–295. [Google Scholar] [CrossRef]
- Cazalilla, M.A.; Rey, A.M. Ultracold Fermi gases with emergent SU(N) symmetry. Rep. Progr. Phys. 2014, 77, 124401. [Google Scholar] [CrossRef] [PubMed]
- Pagano, G.; Mancini, M.; Cappellini, G.; Lombardi, P.; Schäfer, F.; Hu, H.; Liu, X.-J.; Catani, J.; Sias, C.; Inguscio, M.; et al. A one-dimensional liquid of fermions with tunable spin. Nat. Phys. 2014, 10, 198–201. [Google Scholar] [CrossRef]
- Barros, J.C.P.; Lepori, L.; Trombettoni, A. Phase diagram and non-Abelian symmetry locking for fermionic mixtures with unequal interactions. Phys. Rev. A 2017, 96, 013603. [Google Scholar] [CrossRef]
- Mancini, M.; Pagano, G.; Cappellini, G.; Livi, L.; Rider, M.; Catani, J.; Sias, C.; Zoller, P.; Inguscio, M.; Dalmonte, M.; et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 2015, 349, 1510–1513. [Google Scholar] [CrossRef] [PubMed]
- Lepori, L.; Trombettoni, A.; Vinci, W. Simulation of two-flavor symmetry-locking phases in ultracold fermionic mixtures. Europhys. Lett. 2015, 109, 50002. [Google Scholar] [CrossRef]
- Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 2008, 80, 1215. [Google Scholar] [CrossRef]
- Stamper-Kurn, D.M.; Ueda, M. Spinor Bose gases: Symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys. 2013, 85, 1191. [Google Scholar] [CrossRef]
- Jimenez-Garcia, K.; LeBlanc, L.J.; Williams, R.A.; Beeler, M.C.; Qu, C.; Gong, M.; Zhang, C.; Spielman, I.B. Tunable Spin-Orbit Coupling via Strong Driving in Ultracold-Atom Systems. Phys. Rev. Lett. 2015, 114, 125301. [Google Scholar] [CrossRef] [PubMed]
- Lepori, L.; Salasnich, L. Tunable zero and first sounds in ultracold Fermi gases with Rabi coupling. J. Stat. Mech. 2017, 2017, 043107. [Google Scholar] [CrossRef]
- Abad, M.; Recati, A. A study of coherently coupled two-component Bose-Einstein Condensates. Eur. Phys. J. D 2013, 67, 148. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics; Elsevier: New York, NY, USA, 1981. [Google Scholar]
- Annett, J.F. Superconductivity, Superfluids, and Condensates; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Pao, C.-H.; Wu, S.-T.; Yip, S.-K. Superfluid stability in BEC-BCS crossover. Phys. Rev. B 2005, 73, 132506. [Google Scholar] [CrossRef]
- Levinsen, J.; Cooper, N.R.; Shlyapnikov, G.V. Topological px+ipy superfluid phase of fermionic polar molecules. Phys. Rev. A 2011, 84, 013603. [Google Scholar] [CrossRef]
- Randeria, M. Bose-Einstein Condensation; Griffin, A., Snoke, D.W., Stringari, S., Eds.; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Zwerger, W. (Ed.) The BCS-BEC Crossover and Unitary Fermi Gas; Springer: New York, NY, USA, 2012. [Google Scholar]
- Randeria, M.; Duan, J.M.; Shieh, L.Y. Superconductivity in a two-dimensional Fermi gas: Evolution from Cooper pairing to Bose condensation. Phys. Rev. B 1990, 41, 327. [Google Scholar] [CrossRef]
- Pagano, G.; University of Maryland, College Park, MD, USA. Personal communication, 2013.
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lepori, L.; Maraga, A.; Celi, A.; Dell’Anna, L.; Trombettoni, A. Effective Control of Chemical Potentials by Rabi Coupling with RF-Fields in Ultracold Mixtures. Condens. Matter 2018, 3, 14. https://doi.org/10.3390/condmat3020014
Lepori L, Maraga A, Celi A, Dell’Anna L, Trombettoni A. Effective Control of Chemical Potentials by Rabi Coupling with RF-Fields in Ultracold Mixtures. Condensed Matter. 2018; 3(2):14. https://doi.org/10.3390/condmat3020014
Chicago/Turabian StyleLepori, Luca, Anna Maraga, Alessio Celi, Luca Dell’Anna, and Andrea Trombettoni. 2018. "Effective Control of Chemical Potentials by Rabi Coupling with RF-Fields in Ultracold Mixtures" Condensed Matter 3, no. 2: 14. https://doi.org/10.3390/condmat3020014
APA StyleLepori, L., Maraga, A., Celi, A., Dell’Anna, L., & Trombettoni, A. (2018). Effective Control of Chemical Potentials by Rabi Coupling with RF-Fields in Ultracold Mixtures. Condensed Matter, 3(2), 14. https://doi.org/10.3390/condmat3020014