Very High-Energy Cosmic Ray Particles from the Kerr Black Hole at the Galaxy Center
Abstract
1. A Tribute to Guido Barbiellini
2. Introduction
3. Black Hole Maximum Tension, Wilson Area Law and Surface Confinement
- the entropy area relation
- the spherical BH radius
- the area of the BH horizon
- the horizon entropy
- the temperature
- finally, the free energy
4. Practical Consequences of All BH Mass Lying on Its Surface
5. Experimental Verification of Our Predictions by the HAWC Collaboration
- Very high-energy ( TeV) gamma ray data are best described as originating from a point like source [HAWC J1746-2856] with a power law spectrum for N (i.e., the number current flux density per unit area per unit time) that has been parametrized as
- The HAWC Collaboration concludes that the UHE gamma rays detected by them originate via hadronic interaction of PeV cosmic ray protons with the dense ambient gas and confirms the presence of a proton PeVatron at the GC, but they do not provide a mechanism for it.
6. On the Origins of Supermassive BH
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barbiellini, G. Remebering Giordano Diambrini Palazzi; Imprimenda—Istituto Nazionale di Fisica Nucleare—Sapienza Università di Roma, Dipartimento di Fisica: Rome, Italy, 2013; ISBN 978-88-88610-35-1. [Google Scholar]
- Pancheri, G. Bruno Touschek’s Extraordinary Journey: From Death Rays to Antimatter; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Barbiellini, G.; Bozzo, M.; Darriulat, P.; Palazzi, G.D.; Zorzi, G.D.; Fainberg, A.; Ferrero, M.I.; Holder, M.; McFarland, A.; Maderni, G.; et al. Small-angle proton-proton elastic scattering at very high energies (460 GeV2 < s < 2900 GeV2). Phys. Lett. 1972, 39, 663. [Google Scholar]
- Widom, A.; Swain, J.; Srivastava, Y.N. The theoretical power Law exponent for electron and positron cosmic rays: A comment on the recent letter of the AMS collaboration. arXiv 2015, arXiv:hep-ph/1501.07810. [Google Scholar] [CrossRef]
- Abdollahi, S.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bloom, E.D.; Bonino, R.; et al. Cosmic-ray electron+positron spectrum from 7 GeV to 2 TeV with the Fermi Large Area Telescope. arXiv 2017, arXiv:1704.07195v1. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; et al. The Fermi galactic center gev excess and implications for dark matter. arXiv 2017, arXiv:1704.03910v1. [Google Scholar] [CrossRef]
- Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian A., G.; Andersson, T.; Angüner E., O.; Arrieta, M.; Aubert, P.; Backes, M.; et al. Gamma-ray blazar spectra with H.E.S.S. II mono analysis: The case of PKS2155-304 and PG1553+113. Astron. Astrophys. 2017, 600, A89. [Google Scholar]
- Panella, O.; Pacetti, S.; Immirzi, G.; Srivastava, Y. Kerr Black Hole as a Pevatron at the Galaxy Center. Universe 2025, 11, 160. [Google Scholar] [CrossRef]
- Hawking, S. Particle Creation by Black Holes. Comm. Math. Phys. 1975, 43, 199. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Quantum black holes as atoms. arXiv 1997, arXiv:gr-qc/9710076. [Google Scholar]
- Unruh, W.G. Notes on black hole evaporation. Phys. Rev. 1976, 14, 870. [Google Scholar] [CrossRef]
- Stephens, C.R.; ’t Hooft, G.; Whiting, B.F. Black Hole Evaporation Without Information Loss. arXiv 1993, arXiv:9310.006v1. [Google Scholar] [CrossRef]
- ’t Hooft, G. An ambiguity of the equivalence principle and Hawking’s temperature. J. Geom. Phys. 1984, 1, 45. [Google Scholar] [CrossRef]
- ’t Hooft, G. Quantum clones inside black holes. Universe 2022, 8, 537. [Google Scholar] [CrossRef]
- ’t Hooft, G. How studying black hole theory may help us to quantise gravity. In Proceedings of the Conference on Eternity between Space and Time, Padova, Italy, 19–21 May 2022. [Google Scholar]
- ’t Hooft, G. How an exact discrete symmetry can preserve black hole information or, Turning a Black Hole Inside Out. arXiv 2023, arXiv:2301.08708. [Google Scholar] [CrossRef]
- Widom, A.; Swain, J.; Srivastava, Y. Horizon Thermodynamics and Gravitational Tension. arXiv 2016, arXiv:1602.03057v1. [Google Scholar] [CrossRef]
- Jacobson, T. Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett. 1995, 75, 1260. [Google Scholar] [CrossRef]
- Gibbons, G.W. The maximum tension principle in general relativity. Found. Phys. 2002, 32, 1891. [Google Scholar] [CrossRef]
- Schiller, C. aximum force and minimum distance: Physics in limit statements. arXiv 2004, arXiv:physics/0309118v5. [Google Scholar]
- Wilson, K.G. Confinement of quarks. Phys. Rev. 1979, 80, 2445. [Google Scholar] [CrossRef]
- Albert, A.; Alfaro, R.; Alvarez, C.; Andrés, A.; Arteaga-Velázquez, J.C.; Rojas, D.A.; Solares, H.A.; Babu, R.; Belmont-Moreno, E.; Bernal, A.; et al. Observation of the Galactic Center PeVatron beyond 100 TeV with HAWC. Astrophys. J. Lett. 2024, L34, 973. [Google Scholar]
- The Event Horizon Telescope Collaboration; Akiyama, K.; Albentosa-Ruíz, E.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; et al. The persistent shadow of the supermassive black hole of M87. Astron. Astrophys. 2024, 79, 681. [Google Scholar]
- Landau, L.; Lifshitz, E. Classical Theory of Fields; Fourth Revised English Edition; Butterworth-Heineman: London, UK, 1967. [Google Scholar]
- Widom, A.; Swain, J.; Srivastava, Y.N. Entropy and the cosmic ray particle energy distribution power law exponent. arXiv 2014, arXiv:hep-ph/1410.1766. [Google Scholar] [CrossRef]
- Widom, A.; Swain, J.; Srivastava, Y.N. Concerning the Nature of the Cosmic Ray Power Law Exponents. arXiv 2015, arXiv:hep-ph/1410.6498. [Google Scholar] [CrossRef]
- Widom, A.; Swain, J.; Srivastava, Y.N. A Quantum Phase Transition in the Cosmic Ray Energy Distribution. arXiv 2015, arXiv:hep-ph/1501.07809. [Google Scholar] [CrossRef]
- Pancheri, G.; Srivastava, Y.N. Introduction to the physics of the total cross section at LHC: A review of data & models. Euro. Phys. J. 2017, 77, 150. [Google Scholar]
- Greisen, K. End to the cosmic ray spectrum? Phys. Rev. Lett. 1966, 16, 748. [Google Scholar] [CrossRef]
- Zatsepin, G.; Kuz’min, V. Upper limit of the spectrum of cosmic rays. JETP 1966, 4, 78. [Google Scholar]
- Weinberg, S. Gravitation and Cosmolgy: Principles and Applications of the General Theory of Relativity; John Wiley & Sons: New York, NY, USA, 1972; Chapter 11. [Google Scholar]
420 PeV | PeV | PeV | |
190 keV | 33 keV | 0.25 keV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panella, O.; Pacetti, S.; Immirzi, G.; Srivastava, Y. Very High-Energy Cosmic Ray Particles from the Kerr Black Hole at the Galaxy Center. Condens. Matter 2025, 10, 47. https://doi.org/10.3390/condmat10030047
Panella O, Pacetti S, Immirzi G, Srivastava Y. Very High-Energy Cosmic Ray Particles from the Kerr Black Hole at the Galaxy Center. Condensed Matter. 2025; 10(3):47. https://doi.org/10.3390/condmat10030047
Chicago/Turabian StylePanella, Orlando, Simone Pacetti, Giorgio Immirzi, and Yogendra Srivastava. 2025. "Very High-Energy Cosmic Ray Particles from the Kerr Black Hole at the Galaxy Center" Condensed Matter 10, no. 3: 47. https://doi.org/10.3390/condmat10030047
APA StylePanella, O., Pacetti, S., Immirzi, G., & Srivastava, Y. (2025). Very High-Energy Cosmic Ray Particles from the Kerr Black Hole at the Galaxy Center. Condensed Matter, 10(3), 47. https://doi.org/10.3390/condmat10030047