Previous Article in Journal
The Standard Model of Particle Physics and What Lies Beyond: A View from the Bridge
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Field-Induced Ferroaxiality in Antiferromagnets with Magnetic Toroidal Quadrupole

Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
Condens. Matter 2025, 10(2), 35; https://doi.org/10.3390/condmat10020035
Submission received: 11 May 2025 / Revised: 12 June 2025 / Accepted: 13 June 2025 / Published: 14 June 2025
(This article belongs to the Section Magnetism)

Abstract

:
Magnetic toroidal multipoles have recently emerged as key descriptors of unconventional cross-correlation phenomena in antiferromagnetic systems. Among them, the rank-2 magnetic toroidal quadrupole, which is characterized as a time-reversal-odd polar tensor, has been theoretically associated with a variety of cross-correlation phenomena arising from the time-reversal symmetry breaking. In this study, we investigate the interplay between magnetic toroidal quadrupoles and electric toroidal dipoles in antiferromagnets, with a particular focus on magnetic field-induced ferroaxiality. Through symmetry analysis and microscopic model calculations, we demonstrate that ferroaxiality can be induced by an external magnetic field, depending on both the field direction and the type of the magnetic toroidal quadrupole. We classify all magnetic point groups that possess magnetic toroidal quadrupoles and identify various candidate materials based on the MAGNDATA database. Our findings reveal a route to coupling spin and lattice degrees of freedom via toroidal multipoles.

1. Introduction

Magnetic toroidal multipoles have recently attracted considerable attention in condensed matter physics [1,2,3,4,5]. These magnetic toroidal multipoles differ from conventional magnetic multipoles in that they are time-reversal-odd polar tensors, rather than time-reversal-odd axial tensors. As such, several intriguing physical phenomena characteristic of magnetic toroidal multipoles have been recognized. A representative example is the rank-1 magnetic toroidal dipole, which is typically realized as a vortex-like spin configuration that simultaneously breaks spatial inversion and time-reversal symmetries [4,5,6,7]. This symmetry breaking leads to a host of parity-violating responses, including the linear magnetoelectric effect [8,9,10,11,12,13,14], asymmetric magnon dispersions [15,16,17,18,19], directional-dependent nonlinear transport [20,21,22,23,24,25], nonlinear spin Hall effect [26,27], and intrinsic nonlinear Hall effect [28,29,30]. Some of these phenomena have been experimentally observed in insulating and metallic multiferroic materials such as Cr2O3 [8,31,32], GaFeO3 [33,34,35,36], LiCoPO4 [37,38,39,40], CuMnAs [28,41,42,43,44], UNi4B [45,46,47,48], and HoAgGe [49,50,51,52]. Beyond the dipole component, recent studies have shown that the other-rank magnetic toroidal multipoles also lead to exotic responses. For instance, the rank-0 magnetic toroidal monopole has been linked to time-reversal-switching responses [9,53,54], while the rank-2 magnetic toroidal quadrupole has been connected to magnetically driven spin current generation [55,56] and quadrupole anomalous Hall effect [57]. These magnetic toroidal multipoles naturally appear in antiferromagnetic materials irrespective of whether their spin configurations are collinear or noncollinear. A number of candidate materials exhibiting such magnetic toroidal multipoles have been theoretically proposed and experimentally examined, including Co2SiO4 [58], KMnF3 [59], Ca2RuO4 [60], Mn3As2 [61], Mn3IrGe [62], Mn2FeMoO6 [63], CuFeS2 [64], ErGe1.83 [65], and Ce4Sb3 [66].
In addition to magnetic toroidal multipoles, electrons in solids possess another toroidal multipole degree of freedom known as electric toroidal multipoles [1,2,6,7]. The electric toroidal multipoles are characterized as time-reversal-even axial tensors, exhibiting parity properties opposite to those of magnetic toroidal multipoles in terms of both spatial inversion and time-reversal operations; the electric toroidal dipole is related to the vortex structure of the electric dipole, as shown in Figure 1 [67,68]. Recent spectroscopic studies have observed ferroic ordering of electric toroidal dipoles, which is so-called ferroaxial or ferrorotational ordering, in a variety of materials, including RbFe(MoO4)2 [69,70], NiTiO3 [70,71,72], Ca5Ir3O12 [73,74,75,76], and BaCoSiO4 [77]. The electric toroidal dipoles can be the origin of various unconventional physical phenomena [78,79,80], such as the antisymmetric thermopolarization [81], intrinsic longitudinal spin current generation [79,82], and transverse nonlinear magnetic response [83]. In this way, both magnetic and electric toroidal multipoles offer promising pathways to realizing exotic physical functionalities. However, the interplay between these two types of toroidal multipoles remains largely unexplored.
In the present study, we show an effective coupling between magnetic toroidal and electric toroidal degrees of freedom based on symmetry considerations and microscopic model analyses. We specifically focus on ferroaxiality in antiferromagnets hosting the magnetic toroidal quadrupole. Our results show that applying an external magnetic field in the presence of such a magnetic toroidal quadrupole order can induce ferroaxiality, with the response strongly dependent on the field direction. To illustrate this mechanism, we analyze fundamental antiferromagnetic systems with both collinear and noncollinear spin configurations for a tight-binding model. We further classify all magnetic point groups to possess the magnetic toroidal quadrupoles in antiferromagnets, and provide a list of candidate materials extracted from the MAGNDATA database [84]. These findings reveal a route to functionalities arising from the interplay between magnetic toroidal and electric toroidal multipole degrees of freedom in antiferromagnetic systems.
The remainder of this paper is organized as follows. In Section 2, we briefly introduce the concept of the magnetic toroidal quadrupole and discuss relevant antiferromagnetic spin structures. We also present a classification of all magnetic point groups possessing active magnetic toroidal quadrupoles. In Section 3, we explore the emergence of magnetic field-induced ferroaxiality under the magnetic toroidal quadrupole ordering based on the symmetry analysis. Section 4 provides microscopic model calculations that demonstrate the cross-correlation effects discussed in Section 3. Finally, Section 5 summarizes the main conclusions of this work.

2. Magnetic Toroidal Quadrupole

The magnetic toroidal quadrupole is a rank-2 magnetic toroidal multipole, consisting of five components. Its operator expressions are given by [85]
T u = 3 z j t 2 z r j · t 2 ,
T v = 3 ( x j t 2 x y j t 2 y ) ,
T y z = 3 ( y j t 2 z + z j t 2 y ) ,
T z x = 3 ( z j t 2 x + x j t 2 z ) ,
T x y = 3 ( x j t 2 y + y j t 2 x ) .
Here, t 2 ( r j ) denotes the rank-2 magnetic toroidal moment defined as
t 2 ( r j ) = 1 6 r j × l j + 4 s j ,
where r j , l j , and s j stand for the position, orbital angular momentum, and spin angular momentum operators of the j-th electron, respectively. The magnetic toroidal moment t 2 ( r j ) is odd under both spatial inversion and time-reversal operations. As a result, the magnetic toroidal quadrupoles with five components, ( T u , T v , T y z , T z x , T x y ) , are even under the spatial inversion operation and odd under the time-reversal operation. This symmetry property indicates that the breaking of the time-reversal symmetry is essential for activating magnetic toroidal quadrupole moments.
A variety of magnetic structures can accommodate magnetic toroidal quadrupoles. We present several examples of antiferromagnetic spin configurations that host the magnetic toroidal quadrupoles in a tetragonal cluster with D 4 h symmetry. These spin configurations are used for the microscopic model analyses discussed in Section 4. Under the D 4 h point group, the irreducible representations of the magnetic toroidal quadrupoles are classified as follows: T u A 1 g , T v B 1 g , T y z , T z x E g , and T x y B 2 g [86]. Considering the 8e Wyckoff position under D 4 h symmetry, we obtain a total of 24 independent magnetic structures, whose symmetry representations are decomposed as A 1 g 2 A 2 g 2 B 1 g B 2 g 3 E g 2 A 1 u A 2 u B 1 u 2 B 2 u 3 E u . Among these, the irreducible representations 3 E g 2 A 1 u A 2 u B 1 u 2 B 2 u 3 E u correspond to odd-parity magnetic and magnetic toroidal multipoles, while A 1 g 2 A 2 g 2 B 1 g B 2 g 3 E g corresponds to even-parity ones. The latter category includes magnetic dipole, magnetic toroidal quadrupole, magnetic octupole, and so on. In particular, the magnetic structures belonging to A 1 g , B 1 g , B 2 g , and E g indicate that they can be regarded as hosting uniform magnetic toroidal quadrupoles from the viewpoint of cluster multipole theory [87,88,89,90]. We present antiferromagnetic structures with T u in Figure 2a, T v in Figure 2b,c, and T x y in Figure 2d; the magnetic structures in Figure 2a,b,d are noncollinear, while that in Figure 2c is collinear.
The emergence of magnetic toroidal quadrupoles, as illustrated in Figure 2, can be intuitively understood by examining the spatial distribution of magnetic toroidal dipole moment defined as i r i × s i without the orbital degree of freedom. By setting the origin of r i at the center of each face of the cuboid in Figure 2a, one finds that the magnetic toroidal dipole moments point outward on the side faces, whereas they point inward on the top and bottom surfaces. This distribution clearly corresponds to the magnetic toroidal quadrupole T u defined in Equation (1). Similarly, a spatial distribution of magnetic toroidal dipole moments exhibiting the same symmetry as T v can be realized, independent of whether the magnetic structure is collinear and noncollinear, as shown in Figure 2b,c. For the case of T x y shown in Figure 2d, the corresponding quadrupole distribution can be obtained by defining the origin of r i at the midpoint of the bond connecting the top and bottom faces of the cuboid.
The above examples illustrate that a wide variety of antiferromagnetic structures can host the magnetic toroidal quadrupoles. Indeed, from the viewpoint of the magnetic point group symmetry, the magnetic toroidal quadrupoles are symmetry-allowed in 42 out of the 122 magnetic point groups [86]; among them, 19 magnetic point groups possess the ferroaxiality (electric toroidal dipoles). We provide a comprehensive list of all magnetic point groups that permit magnetic toroidal quadrupoles or electric toroidal dipole under magnetic orderings, along with representative candidate materials extracted from MAGNDATA [84], in Table 1. These candidate antiferromagnetic compounds represent promising platforms for realizing magnetic field-induced ferroaxiality, which will be discussed in the next section.

3. Field-Induced Axiality

Since the magnetic toroidal quadrupole is a rank-2 time-reversal-odd polar tensor, it mediates coupling between two rank-1 vectors: a time-reversal-even one, corresponding to the electric toroidal dipole, i.e., ferroaxiality related to static rotational lattice distortion, and a time-reversal-odd one, corresponding to the magnetic dipole. Considering the magnetic dipole shares the same symmetry as the external magnetic field, the electric toroidal dipole G = ( G x , G y , G z ) can be induced by the magnetic field H = ( H x , H y , H z ) in the presence of the magnetic toroidal quadrupole.
From the tensor product [150], their relationship is clearly expressed as follows:
G x = 1 3 T u + T v H x + T x y H y + T z x H z ,
G y = T x y H x 1 3 T u + T v H y + T y z H z ,
G z = T z x H x + T y z H y + 2 3 T u H z .
These expressions show that two components of the magnetic toroidal quadrupoles, T u and T v , can give rise to longitudinal couplings between G and H ; G x , G y , and G z are induced by H x , H y , and H z under T u , while G x and G y are induced by H x and H y under T v . In contrast, T y z , T z x , and T x y , lead to transverse couplings between G and H ; for example, G x and G y are induced by H y and H x under T x y , respectively. Thus, ferroaxiality can be induced by the external magnetic field whenever magnetic toroidal quadrupoles are activated in antiferromagnetic systems. The relationship between the ferroaxial moment and magnetic field is summarized in Table 2. Similarly, the magnetic toroidal monopole T 0 also induces the coupling between G and H in the form of G · H , indicating the emergence of isotropic longitudinal field-induced ferroaxiality, as discussed in Ref. [54].
It is also noteworthy that, from a symmetry viewpoint, the magnetic toroidal quadrupole enables coupling between a rank-1 time-reversal-even polar vector and a rank-1 time-reversal-odd polar vector. The former corresponds to an electric dipole, which shares symmetry with physical quantities such as the spin current and electric field, while the latter corresponds to a magnetic toroidal dipole, which shows the same transformation as the electric current. Consequently, this coupling leads to phenomena, such as electric-field-induced magnetic toroidal dipoles and spin current generation driven by electric currents [55,56].

4. Model Analyses

In order to demonstrate the magnetic-field-induced ferroaxiality in antiferromagnets hosting the magnetic toroidal quadrupole, we analyze a fundamental tight-binding model. We consider a bilayer lattice structure consisting of eight sublattices under tetragonal D 4 h symmetry, as illustrated in Figure 3. The bond lengths are set as a = a = 0.5 and c = 1 . Each lattice site hosts one s orbital and three p orbitals, enabling the inclusion of electric toroidal degrees of freedom within the Hilbert space. The tight-binding model is given by
H = k γ α σ γ α σ c k γ α σ ( δ σ σ H t + δ γ γ H SOC h δ γ γ δ α α H M δ γ γ δ α α H Z ) c k γ α σ ,
where c k γ α σ ( ) represents the annihilation (creation) operator of electrons, where the subscripts k , γ , α , and σ stands for the wave vector, sublattices A–H, orbitals s, p x , p y , and p z , and spin, respectively. The first term, H t , represents the kinetic energy contributions, including both intra- and inter-unit cuboid hoppings. The intra-cuboid hoppings are parameterized as follows: along the in-plane bond direction, t denotes the hopping between s orbitals ( α , α = s ), t p denotes the hopping between ( p x , p y ) orbitals ( α , α = p x , p y ), t z denotes the hopping between p z orbitals ( α , α = p z ), and t s p denotes the hopping between different s- ( p x , p y ) orbitals ( α = s and α = p x , p y and vice versa). We also set the hoppings along the z direction as t s z between s orbitals, t p z between p z orbitals, and t s p z between s and p z orbitals. We set t = 1 as the energy unit of the model, and the other hopping parameters are chosen as t p = 0.7 , t z = 0.2 , t s p = 0.3 , t s z = 0.5 , t p z = 0.1 , and t s p z = 0.15 . For the inter-cuboid hopping parameters, each parameter is scaled by a factor of 0.8 relative to the corresponding intra-cuboid value. The following results are not qualitatively altered for different choices of the hopping parameters. The second term in Equation (10), H SOC , represents the atomic spin–orbit coupling, acting on the three p orbitals; λ denotes the magnitude of the spin–orbit coupling and is set as 0.5 .
The third term in Equation (10), H M , describes the antiferromagnetic mean-field term with the magnitude h; we set h = 2 . We consider four types of antiferromagnetic spin configurations hosting the magnetic toroidal quadrupole, as shown in Figure 2a–d. The fourth term in Equation (10), H Z , represents the Zeeman-coupling term with an external magnetic field H = ( H x , H y , H z ) . Here, we neglect orbital effects of the magnetic field, as they do not affect the following results qualitatively. In all calculations, we consider a low-electron filling per site n e = ( 1 / N ) k γ α σ c k γ α σ c k γ α σ = 0.2 ( n e = 8 corresponds to the full filling); the total system size is taken to be N = 8 × 1600 2 , where 1600 2 represents the number of supercell.
Figure 4 shows the magnetic field dependence of ferroaxiality for four types of antiferromagnetic spin configurations. We here evaluate the degree of ferroaxiality by calculating the expectation value of the atomic-scale electric toroidal dipole operator, which is defined as
G = l × σ ,
where l represents the orbital angular momentum operator for the p orbitals and σ = 2 s . It is noteworthy that this outer-product form of coupling between l and σ , characteristic of the electric toroidal dipole, stands in stark constrast to the inner-product form of coupling l · σ that appears in conventional spin–orbit coupling terms. While such an outer-product spin–orbit interaction has been linked to static rotational lattice distortion in nonmagnetic systems [151], our results demonstrate that it can also be induced by an external magnetic field in magnetic systems with the magnetic toroidal quadrupole.
In Figure 4a, we present the results for the antiferromagnetic ordering associated with T u . As expected from the symmetry argument in Section 3, both G z and G x become finite upon applying the magnetic field along the z and x directions, respectively. Moreover, these responses exhibit an odd-function behavior with respect to the magnetic field, which indicates that the direction of ferroaxiality can be reversed by reversing the field direction. Similarly, the other antiferromagnetic spin configurations with T v and T x y display the magnetic field-induced ferroaxiality consistent with the symmetry expectations; G x is induced by H x in the presence of T v , as shown in Figure 4b,c, while G y is induced by H x in the presence of T x y , as shown in Figure 4d. We confirmed that similar results satisfying the relationship in Table 2 are also obtained for the magnetic field along the y direction. We also emphasize the crucial role of the spin–orbit coupling λ in inducing ferroaxiality: in the absence of the spin–orbit coupling ( λ = 0 ), the expectation value G vanishes entirely in the present model.

5. Conclusions

In conclusion, we have investigated cross-correlation phenomena mediated by the magnetic toroidal quadrupoles in antiferromagnetic systems. Our analysis reveals that ferroaxiality, which is a structural degree of freedom associated with rotational lattice distortions, can be induced by an external magnetic field in systems that host the magnetic toroidal quadrupole. We have demonstrated this magnetic field-induced ferroaxiality by means of both symmetry arguments and explicit microscopic model calculations. This result highlights a novel route for coupling spin and lattice degrees of freedom via magnetic toroidal quadrupoles, which becomes a source of a new type of magnetoelastic interactions. Given that a wide variety of antiferromagnetic materials are predicted to exhibit magnetic toroidal quadrupoles, our findings provide a guiding principle for identifying materials that enable such coupling phenomena. Our results are expected to stimulate experimental investigations of ferroaxial responses driven by the magnetic toroidal quadrupole. From an experimental perspective, second-harmonic generation, which covers processes including higher-order multipole contributions like magnetic-dipole and electric-quadrupole transitions even under centrosymmetric lattice structures, is a promising technique for detecting field-induced ferroaxiality, as it is highly sensitive to subtle symmetry changes in the crystal structure [152].

Funding

This research was supported by JSPS KAKENHI, grants numbers JP22H00101, JP22H01183, JP23H04869, JP23K03288, and by JST CREST (JPMJCR23O4) and JST FOREST (JPMJFR2366). Parts of the numerical calculations were performed on the supercomputing systems at ISSP, the University of Tokyo.

Informed Consent Statement

Not applicable.

Data Availability Statement

The original contributions presented in this study are included in the article; further inquiries can be directed to the corresponding author.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Dubovik, V.; Cheshkov, A. Multipole expansion in classical and quantum field theory and radiation. Sov. J. Part. Nucl. 1975, 5, 318–337. [Google Scholar]
  2. Dubovik, V.; Tugushev, V. Toroid moments in electrodynamics and solid-state physics. Phys. Rep. 1990, 187, 145–202. [Google Scholar] [CrossRef]
  3. Gorbatsevich, A.; Kopaev, Y.V. Toroidal order in crystals. Ferroelectrics 1994, 161, 321–334. [Google Scholar] [CrossRef]
  4. Kopaev, Y.V. Toroidal ordering in crystals. Physics-Uspekhi 2009, 52, 1111–1125. [Google Scholar] [CrossRef]
  5. Spaldin, N.A.; Fiebig, M.; Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter 2008, 20, 434203. [Google Scholar] [CrossRef]
  6. Kusunose, H.; Hayami, S. Generalization of microscopic multipoles and cross-correlated phenomena by their orderings. J. Phys. Condens. Matter 2022, 34, 464002. [Google Scholar] [CrossRef]
  7. Hayami, S.; Kusunose, H. Unified description of electronic orderings and cross correlations by complete multipole representation. J. Phys. Soc. Jpn. 2024, 93, 072001. [Google Scholar] [CrossRef]
  8. Popov, Y.F.; Kadomtseva, A.; Belov, D.; Vorob’ev, G.; Zvezdin, A. Magnetic-field-induced toroidal moment in the magnetoelectric Cr2O3. J. Exp. Theor. Phys. Lett. 1999, 69, 330–335. [Google Scholar] [CrossRef]
  9. Schmid, H. On ferrotoroidics and electrotoroidic, magnetotoroidic and piezotoroidic effects. Ferroelectrics 2001, 252, 41–50. [Google Scholar] [CrossRef]
  10. Ederer, C.; Spaldin, N.A. Towards a microscopic theory of toroidal moments in bulk periodic crystals. Phys. Rev. B 2007, 76, 214404. [Google Scholar] [CrossRef]
  11. Yanase, Y. Magneto-Electric Effect in Three-Dimensional Coupled Zigzag Chains. J. Phys. Soc. Jpn. 2014, 83, 014703. [Google Scholar] [CrossRef]
  12. Thöle, F.; Spaldin, N.A. Magnetoelectric multipoles in metals. Philos. Trans. R. Soc. A 2018, 376, 20170450. [Google Scholar] [CrossRef] [PubMed]
  13. Yanagi, Y.; Hayami, S.; Kusunose, H. Manipulating the magnetoelectric effect: Essence learned from Co4Nb2O9. Phys. Rev. B 2018, 97, 020404. [Google Scholar] [CrossRef]
  14. Hayami, S.; Kusunose, H.; Motome, Y. Emergent odd-parity multipoles and magnetoelectric effects on a diamond structure: Implication for the 5d transition metal oxides AOsO4 (A = K, Rb, and Cs). Phys. Rev. B 2018, 97, 024414. [Google Scholar] [CrossRef]
  15. Miyahara, S.; Furukawa, N. Nonreciprocal Directional Dichroism and Toroidalmagnons in Helical Magnets. J. Phys. Soc. Jpn. 2012, 81, 023712. [Google Scholar] [CrossRef]
  16. Miyahara, S.; Furukawa, N. Theory of magneto-optical effects in helical multiferroic materials via toroidal magnon excitation. Phys. Rev. B 2014, 89, 195145. [Google Scholar] [CrossRef]
  17. Hayami, S.; Kusunose, H.; Motome, Y. Asymmetric Magnon Excitation by Spontaneous Toroidal Ordering. J. Phys. Soc. Jpn. 2016, 85, 053705. [Google Scholar] [CrossRef]
  18. Okuma, N. Nonreciprocal superposition state in antiferromagnetic optospintronics. Phys. Rev. B 2019, 99, 094401. [Google Scholar] [CrossRef]
  19. Matsumoto, T.; Hayami, S. Nonreciprocal magnons due to symmetric anisotropic exchange interaction in honeycomb antiferromagnets. Phys. Rev. B 2020, 101, 224419. [Google Scholar] [CrossRef]
  20. Sawada, K.; Nagaosa, N. Optical Magnetoelectric Effect in Multiferroic Materials: Evidence for a Lorentz Force Acting on a Ray of Light. Phys. Rev. Lett. 2005, 95, 237402. [Google Scholar] [CrossRef]
  21. Kawaguchi, H.; Tatara, G. Effective Hamiltonian theory for nonreciprocal light propagation in magnetic Rashba conductor. Phys. Rev. B 2016, 94, 235148. [Google Scholar] [CrossRef]
  22. Watanabe, H.; Yanase, Y. Nonlinear electric transport in odd-parity magnetic multipole systems: Application to Mn-based compounds. Phys. Rev. Res. 2020, 2, 043081. [Google Scholar] [CrossRef]
  23. Watanabe, H.; Yanase, Y. Photocurrent response in parity-time symmetric current-ordered states. Phys. Rev. B 2021, 104, 024416. [Google Scholar] [CrossRef]
  24. Suzuki, Y. Tunneling spin current in systems with spin degeneracy. Phys. Rev. B 2022, 105, 075201. [Google Scholar] [CrossRef]
  25. Yatsushiro, M.; Oiwa, R.; Kusunose, H.; Hayami, S. Analysis of model-parameter dependences on the second-order nonlinear conductivity in P T -symmetric collinear antiferromagnetic metals with magnetic toroidal moment on zigzag chains. Phys. Rev. B 2022, 105, 155157. [Google Scholar] [CrossRef]
  26. Kondo, H.; Akagi, Y. Nonlinear magnon spin Nernst effect in antiferromagnets and strain-tunable pure spin current. Phys. Rev. Res. 2022, 4, 013186. [Google Scholar] [CrossRef]
  27. Hayami, S.; Yatsushiro, M.; Kusunose, H. Nonlinear spin Hall effect in P T -symmetric collinear magnets. Phys. Rev. B 2022, 106, 024405. [Google Scholar] [CrossRef]
  28. Wang, C.; Gao, Y.; Xiao, D. Intrinsic Nonlinear Hall Effect in Antiferromagnetic Tetragonal CuMnAs. Phys. Rev. Lett. 2021, 127, 277201. [Google Scholar] [CrossRef]
  29. Liu, H.; Zhao, J.; Huang, Y.X.; Wu, W.; Sheng, X.L.; Xiao, C.; Yang, S.A. Intrinsic Second-Order Anomalous Hall Effect and Its Application in Compensated Antiferromagnets. Phys. Rev. Lett. 2021, 127, 277202. [Google Scholar] [CrossRef]
  30. Kirikoshi, A.; Hayami, S. Microscopic mechanism for intrinsic nonlinear anomalous Hall conductivity in noncollinear antiferromagnetic metals. Phys. Rev. B 2023, 107, 155109. [Google Scholar] [CrossRef]
  31. Folen, V.J.; Rado, G.T.; Stalder, E.W. Anisotropy of the Magnetoelectric Effect in Cr2O3. Phys. Rev. Lett. 1961, 6, 607–608. [Google Scholar] [CrossRef]
  32. Krotov, S.; Kadomtseva, A.; Popov, Y.F.; Zvezdin, A.; Vorob’ev, G.; Belov, D. Magnetoelectric interactions and induced toroidal ordering in Cr2O3. J. Magn. Magn. Mater. 2001, 226, 963–964. [Google Scholar] [CrossRef]
  33. Arima, T.; Jung, J.H.; Matsubara, M.; Kubota, M.; He, J.P.; Kaneko, Y.; Tokura, Y. Resonant magnetoelectric X-ray scattering in GaFeO3: Observation of ordering of toroidal moments. J. Phys. Soc. Jpn. 2005, 74, 1419–1422. [Google Scholar] [CrossRef]
  34. Staub, U.; Bodenthin, Y.; Piamonteze, C.; García-Fernández, M.; Scagnoli, V.; Garganourakis, M.; Koohpayeh, S.; Fort, D.; Lovesey, S.W. Parity- and time-odd atomic multipoles in magnetoelectric GaFeO3 as seen via soft x-ray Bragg diffraction. Phys. Rev. B 2009, 80, 140410. [Google Scholar] [CrossRef]
  35. Staub, U.; Piamonteze, C.; Garganourakis, M.; Collins, S.P.; Koohpayeh, S.M.; Fort, D.; Lovesey, S.W. Ferromagnetic-type order of atomic multipoles in the polar ferrimagnetic GaFeO3. Phys. Rev. B 2012, 85, 144421. [Google Scholar] [CrossRef]
  36. Nie, Y.m. First-principles approach to investigate toroidal property of magnetoelectric multiferroic GaFeO3. J. Appl. Phys. 2016, 119. [Google Scholar] [CrossRef]
  37. Van Aken, B.B.; Rivera, J.P.; Schmid, H.; Fiebig, M. Observation of ferrotoroidic domains. Nature 2007, 449, 702–705. [Google Scholar] [CrossRef]
  38. Zimmermann, A.S.; Meier, D.; Fiebig, M. Ferroic nature of magnetic toroidal order. Nat. Commun. 2014, 5, 4796. [Google Scholar] [CrossRef]
  39. Fogh, E.; Zaharko, O.; Schefer, J.; Niedermayer, C.; Holm-Dahlin, S.; Sørensen, M.K.; Kristensen, A.B.; Andersen, N.H.; Vaknin, D.; Christensen, N.B.; et al. Dzyaloshinskii-Moriya interaction and the magnetic ground state in magnetoelectric LiCoPO4. Phys. Rev. B 2019, 99, 104421. [Google Scholar] [CrossRef]
  40. Tóth, B.; Kocsis, V.; Tokunaga, Y.; Taguchi, Y.; Tokura, Y.; Bordács, S. Imaging antiferromagnetic domains in LiCoPO4 via the optical magnetoelectric effect. Phys. Rev. B 2024, 110, L100405. [Google Scholar] [CrossRef]
  41. Wadley, P.; Novák, V.; Campion, R.; Rinaldi, C.; Martí, X.; Reichlová, H.; Železnỳ, J.; Gazquez, J.; Roldan, M.; Varela, M.; et al. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs. Nat. Commun. 2013, 4, 2322. [Google Scholar] [CrossRef] [PubMed]
  42. Wadley, P.; Howells, B.; Železnỳ, J.; Andrews, C.; Hills, V.; Campion, R.P.; Novák, V.; Olejník, K.; Maccherozzi, F.; Dhesi, S.; et al. Electrical switching of an antiferromagnet. Science 2016, 351, 587–590. [Google Scholar] [CrossRef] [PubMed]
  43. Godinho, J.; Reichlová, H.; Kriegner, D.; Novák, V.; Olejník, K.; Kašpar, Z.; Šobáň, Z.; Wadley, P.; Campion, R.; Otxoa, R.; et al. Electrically induced and detected Néel vector reversal in a collinear antiferromagnet. Nat. Commun. 2018, 9, 4686. [Google Scholar] [CrossRef]
  44. Manchon, A.; Železný, J.; Miron, I.M.; Jungwirth, T.; Sinova, J.; Thiaville, A.; Garello, K.; Gambardella, P. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 2019, 91, 035004. [Google Scholar] [CrossRef]
  45. Mentink, S.A.M.; Drost, A.; Nieuwenhuys, G.J.; Frikkee, E.; Menovsky, A.A.; Mydosh, J.A. Magnetic Ordering and Frustration in Hexagonal UNi4B. Phys. Rev. Lett. 1994, 73, 1031–1034. [Google Scholar] [CrossRef]
  46. Oyamada, A.; Kondo, M.; Fukuoka, K.; Itou, T.; Maegawa, S.; Li, D.X.; Haga, Y. NMR studies of the partially disordered state in a triangular antiferromagnet UNi4B. J. Phys. Condens. Matter 2007, 19, 145246. [Google Scholar] [CrossRef]
  47. Saito, H.; Uenishi, K.; Miura, N.; Tabata, C.; Hidaka, H.; Yanagisawa, T.; Amitsuka, H. Evidence of a New Current-Induced Magnetoelectric Effect in a Toroidal Magnetic Ordered State of UNi4B. J. Phys. Soc. Jpn. 2018, 87, 033702. [Google Scholar] [CrossRef]
  48. Ota, K.; Shimozawa, M.; Muroya, T.; Miyamoto, T.; Hosoi, S.; Nakamura, A.; Homma, Y.; Honda, F.; Aoki, D.; Izawa, K. Zero-field current-induced Hall effect in ferrotoroidic metal. arXiv 2022, arXiv:2205.05555. [Google Scholar]
  49. Zhao, K.; Deng, H.; Chen, H.; Ross, K.A.; Petříček, V.; Günther, G.; Russina, M.; Hutanu, V.; Gegenwart, P. Realization of the kagome spin ice state in a frustrated intermetallic compound. Science 2020, 367, 1218–1223. [Google Scholar] [CrossRef]
  50. Li, N.; Huang, Q.; Yue, X.Y.; Guang, S.K.; Xia, K.; Wang, Y.Y.; Li, Q.J.; Zhao, X.; Zhou, H.D.; Sun, X.F. Low-temperature transport properties of the intermetallic compound HoAgGe with a kagome spin-ice state. Phys. Rev. B 2022, 106, 014416. [Google Scholar] [CrossRef]
  51. Zhao, K.; Tokiwa, Y.; Chen, H.; Gegenwart, P. Discrete degeneracies distinguished by the anomalous Hall effect in a metallic kagome ice compound. Nat. Phys. 2024, 20, 442–449. [Google Scholar] [CrossRef]
  52. Kirikoshi, A.; Hayami, S. Finite-q antiferrotoroidal and ferritoroidal order in a distorted kagome structure. Phys. Rev. B 2025, 111, L201112. [Google Scholar] [CrossRef]
  53. Schmid, H. Some symmetry aspects of ferroics and single phasemultiferroics. J. Phys. Condens. Matter 2008, 20, 434201. [Google Scholar] [CrossRef]
  54. Hayami, S.; Kusunose, H. Time-reversal switching responses in antiferromagnets. Phys. Rev. B 2023, 108, L140409. [Google Scholar] [CrossRef]
  55. Mook, A.; Neumann, R.R.; Johansson, A.; Henk, J.; Mertig, I. Origin of the magnetic spin Hall effect: Spin current vorticity in the Fermi sea. Phys. Rev. Res. 2020, 2, 023065. [Google Scholar] [CrossRef]
  56. Hayami, S.; Yatsushiro, M. Spin Conductivity Based on Magnetic Toroidal Quadrupole Hidden in Antiferromagnets. J. Phys. Soc. Jpn. 2022, 91, 063702. [Google Scholar] [CrossRef]
  57. Koizumi, H.; Yamasaki, Y.; Yanagihara, H. Quadrupole anomalous Hall effect in magnetically induced electron nematic state. Nat. Commun. 2023, 14, 8074. [Google Scholar] [CrossRef] [PubMed]
  58. Hayashida, T.; Matsumoto, K.; Kimura, T. Electric Field-Induced Nonreciprocal Directional Dichroism in a Time-Reversal-Odd Antiferromagnet. Adv. Mater. 2024, 37, 2414876. [Google Scholar] [CrossRef]
  59. Knight, K.S.; Khalyavin, D.D.; Manuel, P.; Bull, C.L.; McIntyre, P. Nuclear and magnetic structures of KMnF3 perovskite in the temperature interval 10 K–105 K. J. Alloy. Compd. 2020, 842, 155935. [Google Scholar] [CrossRef]
  60. Porter, D.G.; Granata, V.; Forte, F.; Di Matteo, S.; Cuoco, M.; Fittipaldi, R.; Vecchione, A.; Bombardi, A. Magnetic anisotropy and orbital ordering in Ca2RuO4. Phys. Rev. B 2018, 98, 125142. [Google Scholar] [CrossRef]
  61. Karigerasi, M.H.; Lam, B.H.; Avdeev, M.; Shoemaker, D.P. Two-step magnetic ordering into a canted state in ferrimagnetic monoclinic Mn3As2. J. Solid State Chem. 2021, 294, 121901. [Google Scholar] [CrossRef]
  62. Eriksson, T.; Bergqvist, L.; Nordblad, P.; Eriksson, O.; Andersson, Y. Structural and magnetic characterization of Mn3IrGe and Mn3Ir (Si1−xGex): Experiments and theory. J. Solid State Chem. 2004, 177, 4058–4066. [Google Scholar] [CrossRef]
  63. Li, M.R.; Retuerto, M.; Walker, D.; Sarkar, T.; Stephens, P.W.; Mukherjee, S.; Dasgupta, T.S.; Hodges, J.P.; Croft, M.; Grams, C.P.; et al. Magnetic-Structure-Stabilized Polarization in an Above-Room-Temperature Ferrimagnet. Angew. Chem. Int. Ed. 2014, 53, 10774. [Google Scholar] [CrossRef]
  64. Donnay, G.; Corliss, L.M.; Donnay, J.D.H.; Elliott, N.; Hastings, J.M. Symmetry of Magnetic Structures: Magnetic Structure of Chalcopyrite. Phys. Rev. 1958, 112, 1917–1923. [Google Scholar] [CrossRef]
  65. Oleksyn, O.; Schobinger-Papamantellos, P.; Ritter, C.; De Groot, C.; Buschow, K. Structure and magnetic ordering in the defect compound ErGe1.83. J. Alloys Compd. 1997, 252, 53–58. [Google Scholar] [CrossRef]
  66. Nirmala, R.; Morozkin, A.; Isnard, O.; Nigam, A. Understanding the magnetic ground state of rare-earth intermetallic compound Ce4Sb3: Magnetization and neutron diffraction studies. J. Magn. Magn. Mater. 2009, 321, 188–191. [Google Scholar] [CrossRef]
  67. Hlinka, J. Eight Types of Symmetrically Distinct Vectorlike Physical Quantities. Phys. Rev. Lett. 2014, 113, 165502. [Google Scholar] [CrossRef]
  68. Hlinka, J.; Privratska, J.; Ondrejkovic, P.; Janovec, V. Symmetry Guide to Ferroaxial Transitions. Phys. Rev. Lett. 2016, 116, 177602. [Google Scholar] [CrossRef]
  69. Jin, W.; Drueke, E.; Li, S.; Admasu, A.; Owen, R.; Day, M.; Sun, K.; Cheong, S.W.; Zhao, L. Observation of a ferro-rotational order coupled with second-order nonlinear optical fields. Nat. Phys. 2020, 16, 42–46. [Google Scholar] [CrossRef]
  70. Hayashida, T.; Uemura, Y.; Kimura, K.; Matsuoka, S.; Hagihala, M.; Hirose, S.; Morioka, H.; Hasegawa, T.; Kimura, T. Phase transition and domain formation in ferroaxial crystals. Phys. Rev. Mater. 2021, 5, 124409. [Google Scholar] [CrossRef]
  71. Hayashida, T.; Uemura, Y.; Kimura, K.; Matsuoka, S.; Morikawa, D.; Hirose, S.; Tsuda, K.; Hasegawa, T.; Kimura, T. Visualization of ferroaxial domains in an order-disorder type ferroaxial crystal. Nat. Commun. 2020, 11, 4582. [Google Scholar] [CrossRef] [PubMed]
  72. Yokota, H.; Hayashida, T.; Kitahara, D.; Kimura, T. Three-dimensional imaging of ferroaxial domains using circularly polarized second harmonic generation microscopy. Npj Quantum Mater. 2022, 7, 106. [Google Scholar] [CrossRef]
  73. Hasegawa, T.; Yoshida, W.; Nakamura, K.; Ogita, N.; Matsuhira, K. Raman Scattering Investigation of Structural Transition in Ca5Ir3O12. J. Phys. Soc. Jpn. 2020, 89, 054602. [Google Scholar] [CrossRef]
  74. Hanate, H.; Hasegawa, T.; Hayami, S.; Tsutsui, S.; Kawano, S.; Matsuhira, K. First Observation of Superlattice Reflections in the Hidden Order at 105 K of Spin–Orbit Coupled Iridium Oxide Ca5Ir3O12. J. Phys. Soc. Jpn. 2021, 90, 063702. [Google Scholar] [CrossRef]
  75. Hayami, S.; Tsutsui, S.; Hanate, H.; Nagasawa, N.; Yoda, Y.; Matsuhira, K. Cluster Toroidal Multipoles Formed by Electric-Quadrupole and Magnetic-Octupole Trimers: A Possible Scenario for Hidden Orders in Ca5Ir3O12. J. Phys. Soc. Jpn. 2023, 92, 033702. [Google Scholar] [CrossRef]
  76. Hanate, H.; Tsutsui, S.; Yajima, T.; Nakao, H.; Sagayama, H.; Hasegawa, T.; Matsuhira, K. Space-Group Determination of Superlattice Structure Due to Electric Toroidal Ordering in Ca5Ir3O12. J. Phys. Soc. Jpn. 2023, 92, 063601. [Google Scholar] [CrossRef]
  77. Xu, X.; Huang, F.T.; Admasu, A.S.; Kratochvílová, M.; Chu, M.W.; Park, J.G.; Cheong, S.W. Multiple ferroic orders and toroidal magnetoelectricity in the chiral magnet BaCoSiO4. Phys. Rev. B 2022, 105, 184407. [Google Scholar] [CrossRef]
  78. Cheong, S.W.; Lim, S.; Du, K.; Huang, F.T. Permutable SOS (symmetry operational similarity). Npj Quantum Mater. 2021, 6, 58. [Google Scholar] [CrossRef]
  79. Hayami, S.; Oiwa, R.; Kusunose, H. Electric Ferro-Axial Moment as Nanometric Rotator and Source of Longitudinal Spin Current. J. Phys. Soc. Jpn. 2022, 91, 113702. [Google Scholar] [CrossRef]
  80. Cheong, S.W.; Huang, F.T.; Kim, M. Linking emergent phenomena and broken symmetries through one-dimensional objects and their dot/cross products. Rep. Prog. Phys. 2022, 85, 124501. [Google Scholar] [CrossRef]
  81. Nasu, J.; Hayami, S. Antisymmetric thermopolarization by electric toroidicity. Phys. Rev. B 2022, 105, 245125. [Google Scholar] [CrossRef]
  82. Roy, A.; Guimarães, M.H.D.; Sławińska, J. Unconventional spin Hall effects in nonmagnetic solids. Phys. Rev. Mater. 2022, 6, 045004. [Google Scholar] [CrossRef]
  83. Inda, A.; Hayami, S. Nonlinear Transverse Magnetic Susceptibility under Electric Toroidal Dipole Ordering. J. Phys. Soc. Jpn. 2023, 92, 043701. [Google Scholar] [CrossRef]
  84. Gallego, S.V.; Perez-Mato, J.M.; Elcoro, L.; Tasci, E.S.; Hanson, R.M.; Momma, K.; Aroyo, M.I.; Madariaga, G. MAGNDATA: Towards a database of magnetic structures. I. The commensurate case. J. Appl. Crystallogr. 2016, 49, 1750–1776. [Google Scholar] [CrossRef]
  85. Kusunose, H.; Oiwa, R.; Hayami, S. Complete Multipole Basis Set for Single-Centered Electron Systems. J. Phys. Soc. Jpn. 2020, 89, 104704. [Google Scholar] [CrossRef]
  86. Yatsushiro, M.; Kusunose, H.; Hayami, S. Multipole classification in 122 magnetic point groups for unified understanding of multiferroic responses and transport phenomena. Phys. Rev. B 2021, 104, 054412. [Google Scholar] [CrossRef]
  87. Hayami, S.; Kusunose, H.; Motome, Y. Spontaneous parity breaking in spin-orbital coupled systems. Phys. Rev. B 2014, 90, 081115. [Google Scholar] [CrossRef]
  88. Hayami, S.; Kusunose, H.; Motome, Y. Emergent spin-valley-orbital physics by spontaneous parity breaking. J. Phys. Condens. Matter 2016, 28, 395601. [Google Scholar] [CrossRef]
  89. Suzuki, M.T.; Koretsune, T.; Ochi, M.; Arita, R. Cluster multipole theory for anomalous Hall effect in antiferromagnets. Phys. Rev. B 2017, 95, 094406. [Google Scholar] [CrossRef]
  90. Suzuki, M.T.; Ikeda, H.; Oppeneer, P.M. First-principles theory of magnetic multipoles in condensed matter systems. J. Phys. Soc. Jpn. 2018, 87, 041008. [Google Scholar] [CrossRef]
  91. Kusunose, H.; Oiwa, R.; Hayami, S. Symmetry-adapted modeling for molecules and crystals. Phys. Rev. B 2023, 107, 195118. [Google Scholar] [CrossRef]
  92. Solana-Madruga, E.; Dos santos García, A.; Arévalo-López, A.; Ávila-Brande, D.; Ritter, C.; Attfield, J.; Sáez-Puche, R. High pressure synthesis of polar and non-polar cation-ordered polymorphs of Mn2ScSbO6. Dalton Trans. 2015, 44, 20441–20448. [Google Scholar] [CrossRef]
  93. Boehm, M.; Roessli, B.; Schefer, J.; Wills, A.S.; Ouladdiaf, B.; Lelièvre-Berna, E.; Staub, U.; Petrakovskii, G.A. Complex magnetic ground state of CuB2O4. Phys. Rev. B 2003, 68, 024405. [Google Scholar] [CrossRef]
  94. Moron, M.C.; Palacio, F.; Rodríguez-Carvajal, J. Crystal and magnetic structures of RbMnF4 and KMnF4 investigated by neutron powder diffraction: The relationship between structure and magnetic properties in the Mn3+ layered perovskites AMnF4 (A= Na, K, Rb, Cs). J. Phys. Condens. Matter 1993, 5, 4909. [Google Scholar] [CrossRef]
  95. Reehuis, M.; Ulrich, C.; Pattison, P.; Ouladdiaf, B.; Rheinstädter, M.C.; Ohl, M.; Regnault, L.P.; Miyasaka, M.; Tokura, Y.; Keimer, B. Neutron diffraction study of YVO3, NdVO3, and TbVO3. Phys. Rev. B 2006, 73, 094440. [Google Scholar] [CrossRef]
  96. Rousse, G.; Rodríguez-Carvajal, J.; Wurm, C.; Masquelier, C. A neutron diffraction study of the antiferromagnetic diphosphate LiFeP2O7. Solid State Sci. 2002, 4, 973–978. [Google Scholar] [CrossRef]
  97. Fernández-Díaz, M.T.; Alonso, J.A.; Martínez-Lope, M.J.; Casais, M.T.; García-Muñoz, J.L. Magnetic structure of the HoNiO3 perovskite. Phys. Rev. B 2001, 64, 144417. [Google Scholar] [CrossRef]
  98. Khalyavin, D.D.; Manuel, P.; Hatnean, M.C.; Petrenko, O.A. Fragile ground state and rigid field-induced structures in the zigzag ladder compound BaDy2O4. Phys. Rev. B 2021, 103, 134434. [Google Scholar] [CrossRef]
  99. Liu, X.; Taddei, K.M.; Li, S.; Liu, W.; Dhale, N.; Kadado, R.; Berman, D.; Cruz, C.D.; Lv, B. Canted antiferromagnetism in the quasi-one-dimensional iron chalcogenide BaFe2Se4. Phys. Rev. B 2020, 102, 180403. [Google Scholar] [CrossRef]
  100. Solana-Madruga, E.; Ritter, C.; Aguilar-Maldonado, C.; Mentré, O.; Attfield, J.P.; Arévalo-López, Á.M. Mn3MnNb2O9: High-pressure triple perovskite with 1: 2 B-site order and modulated spins. Chem. Commun. 2021, 57, 8441–8444. [Google Scholar] [CrossRef]
  101. Li, M.R.; Adem, U.; McMitchell, S.R.; Xu, Z.; Thomas, C.I.; Warren, J.E.; Giap, D.V.; Niu, H.; Wan, X.; Palgrave, R.G.; et al. A polar corundum oxide displaying weak ferromagnetism at room temperature. J. Am. Chem. Soc. 2012, 134, 3737–3747. [Google Scholar] [CrossRef] [PubMed]
  102. Kautzsch, L.; Georgescu, A.B.; Puggioni, D.; Kent, G.; Taddei, K.M.; Reilly, A.; Seshadri, R.; Rondinelli, J.M.; Wilson, S.D. Canted antiferromagnetism in polar MnSiN2 with high Néel temperature. Phys. Rev. Mater. 2023, 7, 104406. [Google Scholar] [CrossRef]
  103. Favre, V.Y.; Tucker, G.S.; Ritter, C.; Sibille, R.; Manuel, P.; Frontzek, M.D.; Kriener, M.; Yang, L.; Berger, H.; Magrez, A.; et al. Ferrimagnetic 120 magnetic structure in Cu2OSO4. Phys. Rev. B 2020, 102, 094422. [Google Scholar] [CrossRef]
  104. Plumier, R.; Sougi, M.; Saint-James, R. Neutron-diffraction reinvestigation of NiCO3. Phys. Rev. B 1983, 28, 4016–4020. [Google Scholar] [CrossRef]
  105. May, A.F.; Liu, Y.; Calder, S.; Parker, D.S.; Pandey, T.; Cakmak, E.; Cao, H.; Yan, J.; McGuire, M.A. Magnetic order and interactions in ferrimagnetic Mn3Si2Te6. Phys. Rev. B 2017, 95, 174440. [Google Scholar] [CrossRef]
  106. Markkula, M.; Arévalo-López, A.M.; Attfield, J.P. Field-induced spin orders in monoclinic CoV2O6. Phys. Rev. B 2012, 86, 134401. [Google Scholar] [CrossRef]
  107. Rousse, G.; Rodriguez-Carvajal, J.; Patoux, S.; Masquelier, C. Magnetic structures of the triphylite LiFePO4 and of its delithiated form FePO4. Chem. Mater. 2003, 15, 4082–4090. [Google Scholar] [CrossRef]
  108. Lu, K.; Sapkota, D.; DeBeer-Schmitt, L.; Wu, Y.; Cao, H.B.; Mannella, N.; Mandrus, D.; Aczel, A.A.; MacDougall, G.J. Canted antiferromagnetic order in the monoaxial chiral magnets V1/3TaS2 and V1/3NbS2. Phys. Rev. Mater. 2020, 4, 054416. [Google Scholar] [CrossRef]
  109. Yelon, W.B.; Cox, D.E. Magnetic Transitions in CsNiCl3. Phys. Rev. B 1973, 7, 2024–2027. [Google Scholar] [CrossRef]
  110. Gonzalo, J.A.; Cox, D.E.; Shirane, G. The Magnetic Structure of FeSb2O4. Phys. Rev. 1966, 147, 415–418. [Google Scholar] [CrossRef]
  111. Garca-Muoz, J.L.; Rodrguez-Carvajal, J.; Obradors, X.; Vallet-Reg, M.; González-Calbet, J.; Parras, M. Complex magnetic structures of the rare-earth cuprates R2Cu2O5 (R = Y,Ho,Er,Yb,Tm). Phys. Rev. B 1991, 44, 4716–4719. [Google Scholar] [CrossRef] [PubMed]
  112. Caignaert, V.; Pralong, V.; Hardy, V.; Ritter, C.; Raveau, B. Magnetic structure of CaBaCo4O7: Lifting of geometrical frustration towards ferrimagnetism. Phys. Rev. B 2010, 81, 094417. [Google Scholar] [CrossRef]
  113. Hutanu, V.; Sazonov, A.; Meven, M.; Murakawa, H.; Tokura, Y.; Bordács, S.; Kézsmárki, I.; Náfrádi, B. Determination of the magnetic order and the crystal symmetry in the multiferroic ground state of Ba2CoGe2O7. Phys. Rev. B 2012, 86, 104401. [Google Scholar] [CrossRef]
  114. Gitgeatpong, G.; Zhao, Y.; Avdeev, M.; Piltz, R.O.; Sato, T.J.; Matan, K. Magnetic structure and Dzyaloshinskii-Moriya interaction in the S = 1 2 helical-honeycomb antiferromagnet α-Cu2V2O7. Phys. Rev. B 2015, 92, 024423. [Google Scholar] [CrossRef]
  115. Garcia-Castro, A.C.; Ibarra-Hernandez, W.; Bousquet, E.; Romero, A.H. Direct Magnetization-Polarization Coupling in BaCuF4. Phys. Rev. Lett. 2018, 121, 117601. [Google Scholar] [CrossRef] [PubMed]
  116. Cockayne, E.; Levin, I.; Wu, H.; Llobet, A. Magnetic structure of bixbyite α-Mn2O3: A combined DFT+U and neutron diffraction study. Phys. Rev. B 2013, 87, 184413. [Google Scholar] [CrossRef]
  117. Lee, J.H.; Kratochvílová, M.; Cao, H.; Yamani, Z.; Kim, J.S.; Park, J.G.; Stewart, G.R.; Oh, Y.S. Unconventional critical behavior in the quasi-one-dimensional S = 1 chain NiTe2O5. Phys. Rev. B 2019, 100, 144441. [Google Scholar] [CrossRef]
  118. Warner, J.K.; Cheetham, A.K.; Cox, D.E.; Von Dreele, R.B. Valence contrast between iron sites in. alpha.-Fe2PO5: A comparative study by magnetic neutron and resonant x-ray powder diffraction. J. Am. Chem. Soc. 1992, 114, 6074–6080. [Google Scholar] [CrossRef]
  119. Brown, P.; Forsyth, J. A neutron diffraction study of weak ferromagnetism in nickel fluoride. J. Phys. C Solid State Phys. 1981, 14, 5171. [Google Scholar] [CrossRef]
  120. Calder, S.; Garlea, V.O.; McMorrow, D.F.; Lumsden, M.D.; Stone, M.B.; Lang, J.C.; Kim, J.W.; Schlueter, J.A.; Shi, Y.G.; Yamaura, K.; et al. Magnetically Driven Metal-Insulator Transition in NaOsO3. Phys. Rev. Lett. 2012, 108, 257209. [Google Scholar] [CrossRef]
  121. Plaza, I.; Palacios, E.; Bartolomé, J.; Rosenkranz, S.; Ritter, C.; Furrer, A. Neutron diffraction study of the magnetic ordered Nd3+ in NdCoO3 and NdInO3 below 1 K. Phys. B Condens. Matter 1997, 234, 632–634. [Google Scholar] [CrossRef]
  122. Ritter, C.; Ceretti, M.; Paulus, W. Determination of the magnetic structures in orthoferrite CeFeO3 by neutron powder diffraction: First order spin reorientation and appearance of an ordered Ce-moment. J. Phys. Condens. Matter 2021, 33, 215802. [Google Scholar] [CrossRef]
  123. Ritter, C.; Vilarinho, R.; Moreira, J.A.; Mihalik, M.; Mihalik, M.; Savvin, S. The magnetic structure of DyFeO3 revisited: Fe spin reorientation and Dy incommensurate magnetic order. J. Phys. Condens. Matter 2022, 34, 265801. [Google Scholar] [CrossRef] [PubMed]
  124. Podchezertsev, S.; Barrier, N.; Pautrat, A.; Suard, E.; Retuerto, M.; Alonso, J.A.; Fernandez-Diaz, M.T.; Rodríguez-Carvajal, J. Influence of Polymorphism on the Magnetic Properties of Co5TeO8 Spinel. Inorg. Chem. 2021, 60, 13990–14001. [Google Scholar] [CrossRef] [PubMed]
  125. Lacorre, P.; Pannetier, J.; Fleischer, T.; Hoppe, R.; Ferey, G. Ordered magnetic frustration: XVI. Magnetic structure of CsCoF4 at 1.5 K. J. Solid State Chem. 1991, 93, 37–45. [Google Scholar] [CrossRef]
  126. Fruchart, D.; Bertaut, E.F. Magnetic studies of the metallic perovskite-type compounds of manganese. J. Phys. Soc. Jpn. 1978, 44, 781–791. [Google Scholar] [CrossRef]
  127. Garlea, V.O.; Jin, R.; Mandrus, D.; Roessli, B.; Huang, Q.; Miller, M.; Schultz, A.J.; Nagler, S.E. Magnetic and Orbital Ordering in the Spinel MnV2O4. Phys. Rev. Lett. 2008, 100, 066404. [Google Scholar] [CrossRef]
  128. Morosan, E.; Fleitman, J.A.; Huang, Q.; Lynn, J.W.; Chen, Y.; Ke, X.; Dahlberg, M.L.; Schiffer, P.; Craley, C.R.; Cava, R.J. Structure and magnetic properties of the Ho2Ge2O7 pyrogermanate. Phys. Rev. B 2008, 77, 224423. [Google Scholar] [CrossRef]
  129. Taddei, K.M.; Sanjeewa, L.; Kolis, J.W.; Sefat, A.S.; de la Cruz, C.; Pajerowski, D.M. Local-Ising-type magnetic order and metamagnetism in the rare-earth pyrogermanate Er2Ge2O7. Phys. Rev. Mater. 2019, 3, 014405. [Google Scholar] [CrossRef]
  130. Pajerowski, D.M.; Taddei, K.M.; Sanjeewa, L.D.; Savici, A.T.; Stone, M.B.; Kolis, J.W. Quantification of local Ising magnetism in rare-earth pyrogermanates Er2Ge2O7 and Yb2Ge2O7. Phys. Rev. B 2020, 101, 014420. [Google Scholar] [CrossRef]
  131. Lappas, A.; Alexandrakis, V.; Giapintzakis, J.; Pomjakushin, V.; Prassides, K.; Schenck, A. Impurity-induced antiferromagnetic order in the Haldane-gap compound PbNi2-xMgxV2O8(x = 0.24). Phys. Rev. B 2002, 66, 014428. [Google Scholar] [CrossRef]
  132. Sale, M.; Xia, Q.; Avdeev, M.; Ling, C.D. Crystal and Magnetic Structures of Melilite-Type Ba2MnSi2O7. Inorg. Chem. 2019, 58, 4164–4172. [Google Scholar] [CrossRef] [PubMed]
  133. Dalmas de Réotier, P.; Marin, C.; Yaouanc, A.; Ritter, C.; Maisuradze, A.; Roessli, B.; Bertin, A.; Baker, P.J.; Amato, A. Long-range dynamical magnetic order and spin tunneling in the cooperative paramagnetic states of the pyrochlore analogous spinel antiferromagnets CdYb2X4 (X = S or Se). Phys. Rev. B 2017, 96, 134403. [Google Scholar] [CrossRef]
  134. Jauch, W.; Reehuis, M.; Schultz, A. γ-ray and neutron diffraction studies of CoF2: Magnetostriction, electron density and magnetic moments. Acta Crystallogr. A 2004, 60, 51–57. [Google Scholar] [CrossRef]
  135. Petit, S.; Lhotel, E.; Damay, F.; Boutrouille, P.; Forget, A.; Colson, D. Long-Range Order in the Dipolar XY Antiferromagnet Er2Sn2O7. Phys. Rev. Lett. 2017, 119, 187202. [Google Scholar] [CrossRef]
  136. Bos, J.W.G.; Colin, C.V.; Palstra, T.T.M. Magnetoelectric coupling in the cubic ferrimagnet Cu2OSeO3. Phys. Rev. B 2008, 78, 094416. [Google Scholar] [CrossRef]
  137. Kurbakov, A.I.; Susloparova, A.E.; Pomjakushin, V.Y.; Skourski, Y.; Vavilova, E.L.; Vasilchikova, T.M.; Raganyan, G.V.; Vasiliev, A.N. Commensurate helicoidal order in the triangular layered magnet Na2MnTeO6. Phys. Rev. B 2022, 105, 064416. [Google Scholar] [CrossRef]
  138. Volkova, O.S.; Mazurenko, V.V.; Solovyev, I.V.; Deeva, E.B.; Morozov, I.V.; Lin, J.Y.; Wen, C.K.; Chen, J.M.; Abdel-Hafiez, M.; Vasiliev, A.N. Noncollinear ferrimagnetic ground state in Ni(NO3)2. Phys. Rev. B 2014, 90, 134407. [Google Scholar] [CrossRef]
  139. Amano Patino, M.; Denis Romero, F.; Goto, M.; Saito, T.; Orlandi, F.; Manuel, P.; Szabó, A.; Kayser, P.; Hong, K.H.; Alharbi, K.N.; et al. Multi-k spin ordering in CaFe3Ti4O12 stabilized by spin-orbit coupling and further-neighbor exchange. Phys. Rev. Res. 2021, 3, 043208. [Google Scholar] [CrossRef]
  140. Li, F.; Pomjakushin, V.; Mazet, T.; Sibille, R.; Malaman, B.; Yadav, R.; Keller, L.; Medarde, M.; Conder, K.; Pomjakushina, E. Revisiting the magnetic structure and charge ordering in La1/3Sr2/3FeO3 by neutron powder diffraction and Mössbauer spectroscopy. Phys. Rev. B 2018, 97, 174417. [Google Scholar] [CrossRef]
  141. Hao, X.F.; Stroppa, A.; Picozzi, S.; Filippetti, A.; Franchini, C. Exceptionally large room-temperature ferroelectric polarization in the PbNiO3 multiferroic nickelate: First-principles study. Phys. Rev. B 2012, 86, 014116. [Google Scholar] [CrossRef]
  142. Lee, M.; Choi, E.S.; Huang, X.; Ma, J.; Dela Cruz, C.R.; Matsuda, M.; Tian, W.; Dun, Z.L.; Dong, S.; Zhou, H.D. Magnetic phase diagram and multiferroicity of Ba3MnNb2O9: A spin-52 triangular lattice antiferromagnet with weak easy-axis anisotropy. Phys. Rev. B 2014, 90, 224402. [Google Scholar] [CrossRef]
  143. Zvereva, E.A.; Raganyan, G.V.; Vasilchikova, T.M.; Nalbandyan, V.B.; Gafurov, D.A.; Vavilova, E.L.; Zakharov, K.V.; Koo, H.J.; Pomjakushin, V.Y.; Susloparova, A.E.; et al. Hidden magnetic order in the triangular-lattice magnet Li2MnTeO6. Phys. Rev. B 2020, 102, 094433. [Google Scholar] [CrossRef]
  144. Zhou, J.S.; Alonso, J.A.; Muoñz, A.; Fernández-Díaz, M.T.; Goodenough, J.B. Magnetic Structure of LaCrO3 Perovskite under High Pressure from In Situ Neutron Diffraction. Phys. Rev. Lett. 2011, 106, 057201. [Google Scholar] [CrossRef] [PubMed]
  145. Ding, L.; Xu, X.; Jeschke, H.O.; Bai, X.; Feng, E.; Alemayehu, A.S.; Kim, J.; Huang, F.T.; Zhang, Q.; Ding, X.; et al. Field-tunable toroidal moment in a chiral-lattice magnet. Nat. Commun. 2021, 12, 5339. [Google Scholar] [CrossRef]
  146. Muñoz, A.; Alonso, J.A.; Martínez-Lope, M.J.; Casáis, M.T.; Martínez, J.L.; Fernández-Díaz, M.T. Magnetic structure of hexagonal RMnO3(R = Y, Sc): Thermal evolution from neutron powder diffraction data. Phys. Rev. B 2000, 62, 9498–9510. [Google Scholar] [CrossRef]
  147. Leblanc, M.; De Pape, R.; Ferey, G.; Pannetier, J. Ordered magnetic frustration–V. Antiferromagnetic structure of the hexagonal bronzoid HTB FeF3; Comparison with the non frustrated rhombohedral form. Solid State Commun. 1986, 58, 171–176. [Google Scholar] [CrossRef]
  148. Munoz, A.; Alonso, J.; Martínez-Lope, M.; Casáis, M.; Martínez, J.; Fernandez-Diaz, M. Evolution of the magnetic structure of hexagonal HoMnO3 from neutron powder diffraction data. Chem. Mater. 2001, 13, 1497–1505. [Google Scholar] [CrossRef]
  149. Ma, J.; Kamiya, Y.; Hong, T.; Cao, H.B.; Ehlers, G.; Tian, W.; Batista, C.D.; Dun, Z.L.; Zhou, H.D.; Matsuda, M. Static and Dynamical Properties of the Spin-1/2 Equilateral Triangular-Lattice Antiferromagnet Ba3CoSb2O9. Phys. Rev. Lett. 2016, 116, 087201. [Google Scholar] [CrossRef]
  150. Hayami, S.; Kusunose, H. Essential role of the anisotropic magnetic dipole in the anomalous Hall effect. Phys. Rev. B 2021, 103, L180407. [Google Scholar] [CrossRef]
  151. Inda, A.; Hayami, S. Emergent cross-product-type spin-orbit coupling under ferroaxial ordering. Phys. Rev. B 2025, 111, L041104. [Google Scholar] [CrossRef]
  152. Sekine, D.; Sato, T.; Tokunaga, Y.; Arima, T.h.; Matsubara, M. Second harmonic imaging of antiferromagnetic domains and confirmation of absence of ferroaxial twins in MnTiO3. Phys. Rev. Mater. 2024, 8, 064406. [Google Scholar] [CrossRef]
Figure 1. An electric toroidal dipole, denoted by the green arrow, is characterized by the vortex structure of electric dipoles, denoted by the orange arrows.
Figure 1. An electric toroidal dipole, denoted by the green arrow, is characterized by the vortex structure of electric dipoles, denoted by the orange arrows.
Condensedmatter 10 00035 g001
Figure 2. Antiferromagnetic spin configurations associated with the magnetic toroidal quadrupoles in a tetragonal cluster with D 4 h symmetry. Each configuration hosts the component of magnetic toroidal quadrupole as follows: (a) T u , (b,c) T v , and (d) T x y ; the collinear magnetic texture in (c) has been discussed in Ref. [56]. The blue arrows indicate spin moments, while the red arrows represent the magnetic toroidal dipole moments. Figures were generated using QtDraw [91].
Figure 2. Antiferromagnetic spin configurations associated with the magnetic toroidal quadrupoles in a tetragonal cluster with D 4 h symmetry. Each configuration hosts the component of magnetic toroidal quadrupole as follows: (a) T u , (b,c) T v , and (d) T x y ; the collinear magnetic texture in (c) has been discussed in Ref. [56]. The blue arrows indicate spin moments, while the red arrows represent the magnetic toroidal dipole moments. Figures were generated using QtDraw [91].
Condensedmatter 10 00035 g002
Figure 3. Bilayer lattice structure with D 4 h symmetry. A–H denote the sublattice sites. Intra-cuboid bonds are shown in gray, while inter-cuboid bonds are highlighted in green.
Figure 3. Bilayer lattice structure with D 4 h symmetry. A–H denote the sublattice sites. Intra-cuboid bonds are shown in gray, while inter-cuboid bonds are highlighted in green.
Condensedmatter 10 00035 g003
Figure 4. Magnetic field dependence of the ferroaxial vector G = ( G x , G y , G z ) under antiferromagnetic orderings with the magnetic toroidal quadrupoles. The results in (ad) are calculated for the antiferromagnetic structures with T u in Figure 2a, T v in Figure 2b, T v in Figure 2c, and T x y in Figure 2d, respectively.
Figure 4. Magnetic field dependence of the ferroaxial vector G = ( G x , G y , G z ) under antiferromagnetic orderings with the magnetic toroidal quadrupoles. The results in (ad) are calculated for the antiferromagnetic structures with T u in Figure 2a, T v in Figure 2b, T v in Figure 2c, and T x y in Figure 2d, respectively.
Condensedmatter 10 00035 g004
Table 1. List of magnetic point groups (MPGs) to possess the magnetic toroidal quadrupole (MTQ) and electric toroidal dipole (ETD). # in the leftmost column shows the index of the magnetic point group. Representative materials extracted from MAGNDATA [84] are also listed in the rightmost column. The materials extracted from Ref. [56] are denoted by †.
Table 1. List of magnetic point groups (MPGs) to possess the magnetic toroidal quadrupole (MTQ) and electric toroidal dipole (ETD). # in the leftmost column shows the index of the magnetic point group. Representative materials extracted from MAGNDATA [84] are also listed in the rightmost column. The materials extracted from Ref. [56] are denoted by †.
MPGMTQETDMaterials
#11 T u , T v , T y z , T z x , T x y G x , G y , G z Mn2ScSbO6 [92], CuB2O4 [93]
#3 1 ¯ T u , T v , T y z , T z x , T x y G x , G y , G z RbMnF4 [94], YVO3 [95]
#62 T u , T v , T z x G y LiFeP2O7 [96], HoNiO3 [97]
#8 2 T x y , T y z G y BaDy2O4 [98], BaFe2Se4 [99]
#9m T u , T v , T z x G y Mn4Nb2O9 [100]
#11 m T x y , T y z G y ScFeO3 [101], MnSiN2 [102]
#12 2 / m T u , T v , T z x G y Cu2OSO4 [103], NiCO3 [104]
#16 2 / m T x y , T y z G y Mn3Ti2Te6 [105], CoV2O6 [106]
#17222 T u , T v FePO4 [107]
#19 2 2 2 T x y VNb3S6 [108], CsNiCl3 [109]
#20 m m 2 T u , T v FeSb2O4 [110], Er2Cu2O5 [111]
#22 m m 2 T z x CaBaCo4O7 [112], Ba2CoGe2O7 [113]
#23 m m 2 T x y α -Cu2V2O7 [114], BaCuF4 [115]
#24 m m m T u , T v α -Mn2O3 [116], NiTe2O5 [117], Fe2PO5 [118]
#27 m m m T x y NiF2 [119], NaOsO3 [120], YFeO3 ( Y = Ce, Nd, Dy) [121,122,123]
#294 T u G z Ce5TeO8 [124]
#31 4 T v , T x y G z
#32 4 ¯ T u G z
#34 4 ¯ T v , T x y G z CsCoF4  [125]
#35 4 / m T u G z Mn3CuN [126], MnV2O4 [127]
#37 4 / m T v , T x y G z
#40422 T u Ho2Ge2O7  [128]
#42 4 22 T v Er2Ge2O7 [129,130]
#44 4 m m T u
#46 4 m m T v PbNi1.76Mg0.24V2O8 [131]
#48 4 ¯ 2 m T u Ba2MnSi2O7 [132], CuFeS2  [64]
#50 4 ¯ m 2 T v
#51 4 ¯ 2 m T v Ce4Sb3  [66]
#53 4 / m m m T u CdYb2S4  [133], KMnF3 [59]
#56 4 / m m m T v CoF2  [134], Er2Sn2O7 [135]
#603 T u G z Cu2OSeO3 [136], Na2MnTeO6 [137]
#62 3 ¯ T u G z NiN2O6 [138], CaFe3Ti4O12 [139]
#6532 T u La0.33Sr0.67FeO3 [140]
#68 3 m T u PbNiO3 [141], Ba3MnNb2O9  [142]
#71 3 ¯ m T u Li2MnTeO6 [143], LaCrO3 [144]
#766 T u G z BaCoSiO4 [145], ScMnO3 [146]
#79 6 ¯ T u G z
#82 6 / m T u G z FeF3 [147]
#87622 T u
#91 6 m m T u HoMnO3 [148], YMnO3 [146]
#95 6 ¯ m 2 T u Ba3CoSb2O9 [149]
#100 6 / m m m T u
Table 2. Ferroaxiality induced by the magnetic field under magnetic toroidal quadrupoles (MTQs). ( H x , H y , H z ) stand for the components of the applied magnetic field, and ( G x , G y , G z ) stand for the components of the electric toroidal dipole corresponding to the axial moment.
Table 2. Ferroaxiality induced by the magnetic field under magnetic toroidal quadrupoles (MTQs). ( H x , H y , H z ) stand for the components of the applied magnetic field, and ( G x , G y , G z ) stand for the components of the electric toroidal dipole corresponding to the axial moment.
MTQ H x H y H z
T u G x G y G z
T v G x G y
T y z G z G y
T z x G z G x
T x y G y G x
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Hayami, S. Field-Induced Ferroaxiality in Antiferromagnets with Magnetic Toroidal Quadrupole. Condens. Matter 2025, 10, 35. https://doi.org/10.3390/condmat10020035

AMA Style

Hayami S. Field-Induced Ferroaxiality in Antiferromagnets with Magnetic Toroidal Quadrupole. Condensed Matter. 2025; 10(2):35. https://doi.org/10.3390/condmat10020035

Chicago/Turabian Style

Hayami, Satoru. 2025. "Field-Induced Ferroaxiality in Antiferromagnets with Magnetic Toroidal Quadrupole" Condensed Matter 10, no. 2: 35. https://doi.org/10.3390/condmat10020035

APA Style

Hayami, S. (2025). Field-Induced Ferroaxiality in Antiferromagnets with Magnetic Toroidal Quadrupole. Condensed Matter, 10(2), 35. https://doi.org/10.3390/condmat10020035

Article Metrics

Back to TopTop