The Standard Model of Particle Physics and What Lies Beyond: A View from the Bridge
Abstract
:1. Introduction
2. Development of the Standard Model of Particle Physics
3. What May Lie Beyond SM
4. Conclusions
Funding
Conflicts of Interest
References
- Fermi, E. Nuclear reactions induced by slow electrons. Nature 1934, 133, 898–899. [Google Scholar] [CrossRef]
- Lee, T.D.; Yang, C.N. Question of Parity Conservation in Weak Interactions. Phys. Rev. 1956, 104, 254–258. [Google Scholar] [CrossRef]
- Wu, C.S. Experimental Test of Parity Conservation in Beta Decay. Phys. Rev. 1957, 105, 1413–1415. [Google Scholar] [CrossRef]
- Sudarshan, E.C.G.; Marshak, R.E. Strong and Weak Interactions. Phys. Rev. Lett. 1958, 1, 87–88. [Google Scholar] [CrossRef]
- Feynman, R.P.; Gell-Mann, M. Theory of the Fermi Interaction. Phys. Rev. 1958, 109, 193–198. [Google Scholar] [CrossRef]
- Weinberg, S. V-A was the key. J. Phys. Conf. Ser. 2009, 196, 012002. [Google Scholar] [CrossRef]
- Glashow, S.L. Partial Symmetries of Weak Interactions. Nucl. Phys. 1961, 22, 579–588. [Google Scholar] [CrossRef]
- Higgs, P.W. Broken Symmetries and the Masses of Gauge Bosons. Phys. Rev. Lett. 1964, 13, 508. [Google Scholar] [CrossRef]
- Weinberg, S. A Model of Leptons. Phys. Rev. Lett. 1967, 19, 1264–1266. [Google Scholar] [CrossRef]
- Salam, A. Weak and Electromagnetic Interactions. Conf. Proc. C 1968, 680519, 367–377. [Google Scholar] [CrossRef]
- Hooft, G.; Veltman, M. Regularization and Renormalization of Gauge Fields. Nucl. Phys. B 1972, 44, 189. [Google Scholar] [CrossRef]
- Gargamelle Collaboration (1973) Evidence for neutrino-neutral current interactions. Phys. Lett. B 1973, 46, 387–391. [CrossRef]
- Arnison, G.; Astbury, A.; Aubert, B.; Bacci, C.; Bauer, G.; Bézaguet, A.; Böck, R.; Bowcock, T.J.V.; Calvetti, M.; Carroll, T.; et al. Experimental Observation of Isolated Large Transverse Energy Electrons with Associated Missing Energy at = 540 GeV. Phys. Lett. B 1983, 122, 103–116. [Google Scholar] [CrossRef]
- Banner, M.; Obs, E.A. High-Energy W Z Bosons Pp Collisions = 540 GeV. Phys. Lett. B 1983, 122, 116–121. [Google Scholar]
- Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A.A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; et al. Observation of a New Particle in the Search for the Standard Model Higgs Boson. Phys. Lett. B 2012, 716, 1. [Google Scholar] [CrossRef]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; et al. Observation of a New Boson at a Mass of 125 GeV. Phys. Lett. B 2012, 716, 30. [Google Scholar] [CrossRef]
- Gross, D.J.; Wilczek, F. Ultraviolet Behavior of Non-Abelian Gauge Theories. Phys. Rev. Lett. 1973, 30, 1343. [Google Scholar] [CrossRef]
- Politzer, H.D. Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett. 1973, 30, 1346. [Google Scholar] [CrossRef]
- Barber, D.P.; Becker, U.; Benda, H.; Boehm, A.; Branson, J.G.; Bron, J.; Buikman, D.; Burger, J.; Chang, C.C.; Chen, H.S.; et al. Discovery of Three Jet Events and a Test of Quantum Chromodynamics at PETRA Energies. Phys. Rev. Lett. 1979, 43, 830. [Google Scholar] [CrossRef]
- Bloom, E.D.; Coward, D.H.; DeStaebler, H.C.; Drees, J.; Miller, G.; Mo, L.W.; Taylor, R.E.; Breidenbach, M.; Friedman, J.I.; Hartmann, G.C.; et al. High-Energy Inelastic e p Scattering at 6-Degrees and 10-Degrees. Phys. Rev. Lett. 1969, 23, 930–934. [Google Scholar] [CrossRef]
- Weinberg, S.S. The Quantum Theory of Fields. Volume 3: Supersymmetry; Cambridge University Press: Cambridge, UK, 2000; ISBN 978-0521553021. [Google Scholar]
- Nath, P. Supersymmetry, Supergravity, and Unification; Cambridge University Press: Cambridge, UK, 2016; ISBN 978-0521197021. [Google Scholar]
- Pati, J.C.; Salam, A. Lepton Number as the Fourth Color. Phys. Rev. D 1974, 10, 275–289, Erratum in Phys. Rev. D 1975, 11, 703–703. [Google Scholar] [CrossRef]
- Georgi, H.; Glashow, S.L. Unity of All Elementary Particle Forces. Phys. Rev. Lett. 1974, 32, 438–441. [Google Scholar] [CrossRef]
- Georgi, H. The State of the Art—Gauge Theories. AIP Conf. Proc. 1975, 23, 575–582. [Google Scholar] [CrossRef]
- Fritzsch, H.; Minkowski, P. Unified Interactions of Leptons and Hadrons. Ann. Phys. 1975, 93, 193–266. [Google Scholar] [CrossRef]
- Raby, S. Supersymmetric Grand Unified Theories: From Quarks to Strings via SUSY GUTs; Springer: Berlin/Heidelberg, Germany, 2017; Volume 939, pp. 1–308. ISBN 978–3-319-55253-8/978–3-319-55255-2. [Google Scholar] [CrossRef]
- Akula, S.; Altunkaynak, B.; Feldman, D.; Nath, P.; Peim, G. Higgs Boson Mass Predictions in SUGRA Unification, Recent LHC-7 Results, and Dark Matter. Phys. Rev. D 2012, 85, 075001. [Google Scholar] [CrossRef]
- Chamseddine, A.H.; Arnowitt, R.L.; Nath, P. Locally Supersymmetric Grand Unification. Phys. Rev. Lett. 1982, 49, 970. [Google Scholar] [CrossRef]
- Akula, S.; Nath, P. Gluino-driven radiative breaking, Higgs boson mass, muon g-2, and the Higgs diphoton decay in supergravity unification. Phys. Rev. D 2013, 87, 115022. [Google Scholar] [CrossRef]
- Li, J.; Nath, P.; Syed, R.M. A natural MSSM from a novel SO(10), Yukawa unification, light sparticles, and SUSY implications at LHC. arXiv 2025, arXiv:2503.19871. [Google Scholar]
- Nath, P.; Perez, P.F. Proton stability in grand unified theories, in strings and in branes. Phys. Rept. 2007, 441, 191–317. [Google Scholar] [CrossRef]
- Takenaka, A.; Abe, K.; Bronner, C.; Hayato, Y.; Ikeda, M.; Imaizumi, S.; Ito, H.; Kameda, J.; Kataoka, Y.; Kato, Y.; et al. [Super-Kamiokande], Search for proton decay via p→e+π0 and p→μ+π0 with an enlarged fiducial volume in Super-Kamiokande I-IV. Phys. Rev. D 2020, 102, 112011. [Google Scholar] [CrossRef]
- Abe, K.; Hayato, Y.; Iyogi, K.; Kameda, J.; Miura, M.; Moriyama; MNakahata, M.; Nakayama, S.; Wendell, R.A.; Sekiya, H.; et al. [Super-Kamiokande], Search for proton decay via p→νK+ using 260 kiloton·year data of Super-Kamiokande. Phys. Rev. D 2014, 90, 072005. [Google Scholar] [CrossRef]
- Abe, K.; Aihara, H.; Aimi, A.; Akutsu, R.; Andreopoulos, C.; Anghel, I.; Anthony, L.H.V.; Antonova, M.; Ashida, Y.; Aushev, V.; et al. [Hyper-Kamiokande], Hyper-Kamiokande Design Report. arXiv 2018, arXiv:1805.04163. [Google Scholar]
- Abi, B.; Acciarri, R.; Acero, M.A.; Adamov, G.; Adams, D.; Adinolfi, M.; Ahmad, Z.; Ahmed, J.; Alion, T.; Monsalve, S.A.; et al. [DUNE], Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics. arXiv 2020, arXiv:2002.03005. [Google Scholar]
- An, F.; An, G.; An, Q.; Antonelli, V.; Baussan, E.; Beacom, J.; Bezrukov, L.; Blyth, S.; Brugnera, R.; Avanzini, M.B.; et al. [JUNO], Neutrino Physics with JUNO. J. Phys. G 2016, 43, 030401. [Google Scholar] [CrossRef]
- Contino, R. The Higgs as a Composite Nambu-Goldstone Boson. Phys. Large Small 2011, 235–306. [Google Scholar] [CrossRef]
- Dienes, K.R.; Dudas, E.; Gherghetta, T. Extra space-time dimensions and unification. Phys. Lett. B 1998, 436, 55–65. [Google Scholar] [CrossRef]
- Quevedo, F.; Krippendorf, S.; Schlotterer, O. Cambridge Lectures on Supersymmetry and Extra Dimensions. arXiv 2010, arXiv:1011.1491. [Google Scholar]
- Antoniadis, I.; Benakli, K. Extra Dimensions and Physics of Low-Scale Strings. arXiv 2023, arXiv:2305.11604. [Google Scholar] [CrossRef]
- Patt, B.; Wilczek, F. Higgs-field portal into hidden sectors. arXiv 2006, arXiv:hep-ph/0605188. [Google Scholar]
- Feldman, D.; Liu, Z.; Nath, P. The Stueckelberg Z-prime Extension with Kinetic Mixing and Milli-Charged Dark Matter From the Hidden Sector. Phys. Rev. D 2007, 75, 115001. [Google Scholar] [CrossRef]
- Graham, P.W.; Irastorza, I.G.; Lamoreaux, S.K.; Lindner, A.; van Bibber, K.A. Experimental Searches for the Axion and Axion-Like Particles. Ann. Rev. Nucl. Part. Sci. 2015, 65, 485–514. [Google Scholar] [CrossRef]
- Kim, J.E.; Marsh, D.J.E. An ultralight pseudoscalar boson. Phys. Rev. D 2016, 93, 025027. [Google Scholar] [CrossRef]
- Hui, L.; Ostriker, J.P.; Tremaine, S.; Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 2017, 95, 043541. [Google Scholar] [CrossRef]
- Halverson, J.; Long, C.; Nath, P. Ultralight axion in supersymmetry and strings and cosmology at small scales. Phys. Rev. D 2017, 96, 056025. [Google Scholar] [CrossRef]
- Brivio, I.; Trott, M. The Standard Model as an Effective Field Theory. Phys. Rept. 2019, 793, 1–98. [Google Scholar] [CrossRef]
- Aalbers, J.; Akerib, D.S.; Al Musalhi, A.K.; Alder, F.; Amarasinghe, C.S.; Ames, A.; Anderson, T.J.; Angelides, N.; Araújo, H.M.; Armstrong, J.E.; et al. [LZ], Dark Matter Search Results from 4.2 Tonne-Years of Exposure of the LUX-ZEPLIN (LZ) Experiment. arXiv 2024, arXiv:2410.17036. [Google Scholar]
- Abdalla, E.; Abellán, G.F.; Aboubrahim, A.; Agnello, A.; Akarsu, O.; Akrami, Y.; Alestas, G.; Aloni, D.; Amendola, L.; Anchordoqui, L.A.; et al. Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. JHEAp 2022, 34, 49–211. [Google Scholar]
- Nath, P. Particle Physics and Cosmology Intertwined. Entropy 2024, 26, 110. [Google Scholar] [CrossRef]
- Di Valentino, E.; Said, J.L.; Riess, A.; Pollo, A.; Poulin, V.; Gómez-Valent, A.; Weltman, A.; Palmese, A.; Huang, C.D.; van de Bruck, C.; et al. [CosmoVerse], The CosmoVerse White Paper: Addressing observational tensions in cosmology with systematics and fundamental physics. arXiv 2025, arXiv:2504.01669. [Google Scholar]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. (Supernova Cosmology Project) Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Riess, A.G. (High-Z Supernova Search Team) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Spergel, D.N.; Verde, L.; Peiris, H.V.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. Astrophys. J. Suppl. 2003, 148, 175. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. [Planck], Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in Astron. Astrophys. 2021, 652, C4. [Google Scholar]
- Galbany, L.; de Jaeger, T.; Riess, A.G.; Müller-Bravo, T.E.; Dhawan, S.; Phan, K.; Stritzinger, M.; Karamehmetoglu, E.; Leibundgut, B.; Burns, C.; et al. An updated measurement of the Hubble constant from near-infrared observations of Type Ia supernovae. Astron. Astrophys. 2023, 679, A95. [Google Scholar] [CrossRef]
- Asgari, M.; Lin, C.A.; Joachimi, B.; Giblin, B.; Heymans, C.; Hildebrandt, H.; Kannawadi, A.; Stölzner, B.; Tröster, T.; van den Busch, J.L.; et al. [KiDS], KiDS-1000 Cosmology: Cosmic shear constraints and comparison between two point statistics. Astron. Astrophys. 2021, 645, A104. [Google Scholar] [CrossRef]
- Aboubrahim, A.; Nath, P. Interacting ultralight dark matter and dark energy and fits to cosmological data in a field theory approach. JCAP 2024, 09, 076. [Google Scholar] [CrossRef]
- Adame, A.G.; Aguilar, J.; Ahlen, S.; Alam, S.; Alexander, D.M.; Alvarez, M.; Alves, O.; An, A.; Andrade, U.; Armengaud, E.; et al. [DESI], DESI 2024 VI: Cosmological constraints from the measurements of baryon acoustic oscillations. JCAP 2025, 02, 021. [Google Scholar] [CrossRef]
- Karim, M.A.; Aguilar, J.; Ahlen, S.; Alam, S.; Allen, L.; Allende Prieto, C.; Alves, O.; Anand, A.; Andrade, U.; Armengaud, E.; et al. [DESI], DESI DR2 Results II: Measurements of Baryon Acoustic Oscillations and Cosmological Constraints. arXiv 2025, arXiv:2503.14738. [Google Scholar]
- Chevallier, M.; Polarski, D. Accelerating universes with scaling dark matter. Int. J. Mod. Phys. D 2001, 10, 213–224. [Google Scholar] [CrossRef]
- Linder, E.V. Exploring the expansion history of the universe. Phys. Rev. Lett. 2003, 90, 091301. [Google Scholar] [CrossRef]
- Aboubrahim, A.; Nath, P. Upper limits on dark energy-dark matter interaction from DESI DR2 in a field-theoretic analysis. arXiv 2024, arXiv:2411.11177. [Google Scholar]
- Aboubrahim, A.; Ibrahim, T.; Nath, P. Radiative Decays of Cosmic Background Neutrinos in Extensions of MSSM with a Vector Like Lepton Generation. Phys. Rev. D 2013, 88, 013019. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. [LIGO Scientific and Virgo] Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Kirzhnits, D.A. Weinberg model in the hot universe. JETP Lett. 1972, 15, 529–531. [Google Scholar]
- Kirzhnits, D.A.; Linde, A.D. Macroscopic Consequences of the Weinberg Model. Phys. Lett. B 1972, 42, 471–474. [Google Scholar] [CrossRef]
- Kamionkowski, M.; Kosowsky, A.; Turner, M.S. Gravitational radiation from first order phase transitions. Phys. Rev. D 1994, 49, 2837–2851. [Google Scholar] [CrossRef]
- Li, J.; Nath, P. Supercooled phase transitions: Why thermal history of hidden sector matters in analysis of pulsar timing array signals. Phys. Rev. D 2025, 111, 123007. [Google Scholar] [CrossRef]
- Khlebnikov, S.Y.; Tkachev, I.I. Relic gravitational waves produced after preheating. Phys. Rev. D 1997, 56, 653–660. [Google Scholar] [CrossRef]
- Easther, R.; Giblin, J.T., Jr.; Lim, E.A. Gravitational Wave Production At The End Of Inflation. Phys. Rev. Lett. 2007, 99, 221301. [Google Scholar] [CrossRef]
- Garcia-Bellido, J.; Figueroa, D.G.; Sastre, A. A Gravitational Wave Background from Reheating after Hybrid Inflation. Phys. Rev. D 2008, 77, 043517. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nath, P. The Standard Model of Particle Physics and What Lies Beyond: A View from the Bridge. Condens. Matter 2025, 10, 34. https://doi.org/10.3390/condmat10020034
Nath P. The Standard Model of Particle Physics and What Lies Beyond: A View from the Bridge. Condensed Matter. 2025; 10(2):34. https://doi.org/10.3390/condmat10020034
Chicago/Turabian StyleNath, Pran. 2025. "The Standard Model of Particle Physics and What Lies Beyond: A View from the Bridge" Condensed Matter 10, no. 2: 34. https://doi.org/10.3390/condmat10020034
APA StyleNath, P. (2025). The Standard Model of Particle Physics and What Lies Beyond: A View from the Bridge. Condensed Matter, 10(2), 34. https://doi.org/10.3390/condmat10020034