In-Depth Experimental and Computational Studies on Rechargeable Battery Materials
Acknowledgments
Conflicts of Interest
List of Contributions
- Gromov, V.; Noubir, A.; Keshavarz, F.; Laakso, E.; Barbiellini, B; Bansil, A. Anodic Potential and Conversion Chemistry of Anhydrous Iron (II) Oxalate in Na-Ion Batteries. Condens. Matter 2023, 8, 38.
- Kothalawala, V. N.; Devi, A. A. S.; Nokelainen, J.; Alatalo, M.; Barbiellini, B.; Hu, T.; Lassi, U.; Suzuki, K.; Sakurai, H.; Bansil, A. First Principles Calculations of the Optical Response of LiNiO2. Condens. Matter 2022, 7, 54.
- Keshavarz, F.; Kadek, M.; Barbiellini, B.; Bansil, A. Anodic Activity of Hydrated and Anhydrous Iron (II) Oxalate in Li-Ion Batteries. Condes. Matter 2022, 7, 8.
- Suzuki, K.; Otsuka, Y.; Hoshi, K.; Sakurai, H.; Tsuji, N.; Yamamoto, K.; Yabuuchi, N.; Hafiz, H.; Orikasa, Y.; Uchimoto, Y.; Sakurai, Y.; Viswanathan, V.; Bansil, A.; Barbiellini, B. Magnetic Compton Scattering Study of Li-Rich Battery Materials. Condens. Matter 2022, 7, 4.
- Pagot, G.; Toso, V.; Barbiellini, B.; Ferragut, R.; Di Noto, V. Positron Annihilation Spectroscopy as a Diagnostic Tool for the Study of LiCoO2 Cathode of Lithium-Ion Batteries. Condens. Matter 2021, 6, 28.
- Mullaliu, A.; Aquilanti, G.; Plaisier, J.R.; Giorgetti, M. Cross-Investigation on Copper Nitroprusside: Combining XRD and XAS for In-Depth Structural Insights. Condens. Matter 2021, 6, 27.
- Nokelainen, J.; Barbiellini, B.; Kuriplach, J.; Eijt, S.; Ferragut, R.; Li, X.; Kothalawala, V.; Suzuki, K.; Sakurai, H.; Hafiz, H.; Pussi, K.; Keshavarz, F.; Bansil, A. Identifying Redox Orbitals and Defects in Lithium-Ion Cathodes with Compton Scattering and Positron Annihilation Spectroscopies: A Review. Condens. Matter 2022, 7, 47.
References
- Barbiellini, B.; Kuriplach, J.; Saniz, R. Study of Rechargeable Batteries Using Advanced Spectroscopic and Computational Techniques. Condens. Matter 2021, 6, 26. [Google Scholar] [CrossRef]
- Ellis, B.L.; Makahnouk, W.R.M.; Makimura, Y.; Toghill, K.; Nazar, L.F. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 2007, 6, 749–753. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuriplach, J.; Saniz, R. In-Depth Experimental and Computational Studies on Rechargeable Battery Materials. Condens. Matter 2025, 10, 24. https://doi.org/10.3390/condmat10020024
Kuriplach J, Saniz R. In-Depth Experimental and Computational Studies on Rechargeable Battery Materials. Condensed Matter. 2025; 10(2):24. https://doi.org/10.3390/condmat10020024
Chicago/Turabian StyleKuriplach, Jan, and Rolando Saniz. 2025. "In-Depth Experimental and Computational Studies on Rechargeable Battery Materials" Condensed Matter 10, no. 2: 24. https://doi.org/10.3390/condmat10020024
APA StyleKuriplach, J., & Saniz, R. (2025). In-Depth Experimental and Computational Studies on Rechargeable Battery Materials. Condensed Matter, 10(2), 24. https://doi.org/10.3390/condmat10020024