Optical Mapping and On-Demand Selection of Local Hysteresis Properties in VO2
Abstract
1. Introduction
2. Materials and Methods
Sample Characteristics Making This Study Possible
3. Results
4. Discussion
4.1. Correlations Between Maps
4.2. Local Selection of On-Demand Hysteretic Properties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dagotto, E. Complexity in Strongly Correlated Electronic Systems. Science 2005, 309, 257. [Google Scholar] [CrossRef]
- McElroy, K.; Lee, J.; Slezak, J.A.; Lee, D.-H.; Eisaki, H.; Uchida, S.; Davis, J.C. Atomic-Scale Sources and Mechanism of Nanoscale Electronic Disorder in Bi2Sr2CaCu2O8+δ. Science 2005, 309, 1048. [Google Scholar] [CrossRef]
- Fäth, M.; Freisem, S.; Menovsky, A.A.; Tomioka, Y.; Aarts, J.; Mydosh, J.A. Spatially Inhomogeneous Metal-Insulator Transition in Doped Manganites. Science 1999, 285, 1540. [Google Scholar] [CrossRef] [PubMed]
- Post, K.W.; McLeod, A.S.; Hepting, M.; Bluschke, M.; Wang, Y.; Cristiani, G.; Logvenov, G.; Charnukha, A.; Ni, G.X.; Radhakrishnan, P.; et al. Coexisting First- and Second-Order Electronic Phase Transitions in a Correlated Oxide. Nat. Phys. 2018, 14, 1056. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, S.; Yang, Y.; Slizovskiy, S.; Morozov, S.V.; Son, S.; Ozdemir, S.; Mullan, C.; Barrier, J.; Yin, J.; et al. Electronic phase separation in multilayer rhombohedral graphite. Nature 2020, 584, 210. [Google Scholar] [CrossRef] [PubMed]
- Morin, F.J. Oxides Which Show a Metal-to-Insulator Transition at the Néel Temperature. Phys. Rev. Lett. 1959, 3, 34. [Google Scholar] [CrossRef]
- Tomczak, J.M.; Biermann, S. Optical Properties of Correlated Materials: Generalized Peierls Approach and Its Application to VO2. Phys. Rev. B 2009, 80, 085117. [Google Scholar] [CrossRef]
- Qazilbash, M.M.; Brehm, M.; Chae, B.-G.; Ho, P.-C.; Andreev, G.O.; Kim, B.-J.; Yun, S.J.; Balatsky, A.V.; Maple, M.B.; Keilmann, F.; et al. Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging. Science 2007, 318, 1750. [Google Scholar] [CrossRef]
- Sharoni, A.; Ramirez, J.G.; Schuller, I.K. Multiple Avalanches across the Metal-Insulator Transition of Vanadium Oxide Nanoscaled Junctions. Phys. Rev. Lett. 2008, 101, 026404. [Google Scholar] [CrossRef] [PubMed]
- Cueff, S.; John, J.; Zhang, Z.; Parra, J.; Sun, J.; Orobtchouk, R.; Ramanathan, S.; Sanchis, P. VO2 nanophotonics. APL Photonics 2020, 5, 110901. [Google Scholar] [CrossRef]
- Yadav, P.K.; Yadav, I.; Ajitha, B.; Rajasekar, A.; Gupta, S.; Reddy, Y.A.K. Advancements of Uncooled Infrared Microbolometer Materials: A Review. Sens. Actuators A Phys. 2022, 342, 113611. [Google Scholar] [CrossRef]
- Shukla, N.; Datta, S.; Parihar, A.; Raychowdhury, A. Computing with Coupled Relaxation Oscillators. In Future Trends Microelectronics: Journey into the Unknown; Luryi, S., Xu, J., Zaslavsky, A., Eds.; Wiley-IEEE Press: Hoboken, NJ, USA, 2016. [Google Scholar]
- Yi, W.; Tsang, K.K.; Lam, S.K.; Bai, X.; Crowell, J.A.; Flores, E.A. Biological Plausibility and Stochasticity in Scalable VO2 Active Memristor Neurons. Nat. Commun. 2018, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Coll, M.; Fontcuberta, J.; Althammer, M.; Bibes, M.; Boschker, H.; Calleja, A.; Cheng, G.; Cuoco, M.; Dittmann, R.; Dkhil, B.; et al. Towards Oxide Electronics: A Roadmap. Appl. Surf. Sci. 2019, 482, 1. [Google Scholar] [CrossRef]
- Spitzig, A.; Pivonka, A.; Frenzel, A.; Kim, J.; Ko, C.; Zhou, Y.; Hudson, E.; Ramanathan, S.; Hoffman, J.E.; Hoffman, J.D. Nanoscale thermal imaging of VO2 via Poole–Frenkel conduction. Appl. Phys. Lett. 2022, 120, 151602. [Google Scholar] [CrossRef]
- Lupi, S.; Baldassarre, L.; Mansart, B.; Perucchi, A.; Barinov, A.; Dudin, P.; Papalazarou, E.; Rodolakis, F.; Rueff, J.-P.; Itié, J.-P.; et al. A microscopic view on the Mott transition in chromium-doped V2O3. Nat. Commun. 2010, 1, 105. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.S.; Perez-Salinas, D.; Siddiqui, K.M.; Kim, S.; Choi, S.; Volckaert, K.; Majchrzak, P.E.; Ulstrup, S.; Agarwal, N.; Hallman, K.; et al. Ultrafast X-ray Imaging of the Light-Induced Phase Transition in VO2. Nat. Phys. 2023, 19, 215–220. [Google Scholar] [CrossRef]
- Kumar, S.; Strachan, J.P.; Pickett, M.D.; Bratkovsky, A.; Nishi, Y.; Williams, R.S. Sequential Electronic and Structural Transitions in VO2 Observed Using X-ray Absorption Spectromicroscopy. Adv. Mater. 2014, 26, 7505–7509. [Google Scholar] [CrossRef]
- Gomes, K.K.; Pasupathy, A.N.; Pushp, A.; Ono, S.; Ando, Y.; Yazdani, A. Visualizing Pair Formation on the Atomic Scale in the High-Tc Superconductor Bi2Sr2CaCu2O8+δ. Nature 2007, 447, 569. [Google Scholar] [CrossRef]
- Qazilbash, M.M.; Tripathi, A.; Schafgans, A.A.; Kim, B.-J.; Kim, H.-T.; Cai, Z.; Holt, M.V.; Maser, J.M.; Keilmann, F.; Shpyrko, O.G.; et al. Nanoscale Imaging of the Electronic and Structural Transitions in Vanadium Dioxide. Phys. Rev. B 2011, 83, 165108. [Google Scholar] [CrossRef]
- Liu, M.K.; Wagner, M.; Abreu, E.; Kittiwatanakul, S.; McLeod, A.; Fei, Z.; Goldflam, M.; Dai, S.; Fogler, M.M.; Lu, J.; et al. Anisotropic Electronic State via Spontaneous Phase Separation in Strained Vanadium Dioxide Films. Phys. Rev. Lett. 2013, 111, 096602. [Google Scholar] [CrossRef]
- Stinson, H.T.; Sternbach, A.; Najera, O.; Jing, R.; McLeod, A.S.; Slusar, T.V.; Mueller, A.; Anderegg, L.; Kim, H.T.; Rozenberg, M.; et al. Imaging the Nanoscale Phase Separation in Vanadium Dioxide Thin Films at Terahertz Frequencies. Nat. Commun. 2018, 9, 4598. [Google Scholar] [CrossRef]
- Hubert, A.; Schäfer, R. Magnetic Domains: The Analysis of Magnetic Microstructures; Springer: Berlin/Heidelberg, Germany, 1998; ISBN 978-3-540-64108-7. [Google Scholar]
- Basak, S.; Sun, Y.; Banguero, M.A.; Salev, P.; Schuller, I.K.; Aigouy, L.; Carlson, E.W.; Zimmers, A. Spatially Distributed Ramp Reversal Memory in VO2. Adv. Electron. Mater. 2023, 9, 2300085. [Google Scholar] [CrossRef]
- Basak, S.; Banguero, M.A.; Burzawa, L.; Simmons, F.; Salev, P.; Aigouy, L.; Qazilbash, M.M.; Schuller, I.K.; Basov, D.N.; Zimmers, A.; et al. Deep learning Hamiltonians from disordered image data in quantum materials. Phys. Rev. B 2023, 107, 205121. [Google Scholar] [CrossRef]
- Guizar, M. Efficient Subpixel Image Registration by Cross-Correlation. MATLAB Central File Exchange. 2025. Available online: https://www.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation (accessed on 30 November 2024).
- Liu, S.; Phillabaum, B.; Carlson, E.W.; Dahmen, K.A.; Vidhyadhiraja, N.S.; Qazilbash, M.M.; Basov, D.N. Random Field Driven Spatial Complexity at the Mott Transition in VO2. Phys. Rev. Lett. 2016, 116, 036401. [Google Scholar] [CrossRef]
- Théry, V.; Boulle, A.; Crunteanu, A.; Orlianges, J.C.; Beaumont, A.; Mayet, R.; Mennai, A.; Cosset, F.; Bessaudou, A.; Fabert, M. Role of thermal strain in the metal-insulator and structural phase transition of epitaxial VO2 films. Phys. Rev. B 2016, 93, 184106. [Google Scholar] [CrossRef]
- Gurvitch, M.; Luryi, S.; Polyakov, A.; Shabalov, A. Nonhysteretic behavior inside the hysteresis loop of and its possible application in infrared imaging. J. Appl. Phys. 2009, 106, 104504. [Google Scholar] [CrossRef]
- Mörée, G.; Leijon, M. Review of Play and Preisach models for hysteresis in magnetic materials. Materials 2023, 16, 2422. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.G.; Saerbeck, T.; Wang, S.; Trastoy, J.; Malnou, M.; Lesueur, J.; Crocombette, J.-P.; Villegas, J.E.; Schuller, I.K. Effect of disorder on the metal-insulator transition of vanadium oxides: Local versus global effects. Phys. Rev. B 2015, 91, 205123. [Google Scholar] [CrossRef]
- Bleu, Y.; Bourquard, F.; Barnier, V.; Loir, A.-S.; Garrelie, F.; Donnet, C. Towards Room Temperature Phase Transition of W-Doped VO2 Thin Films Deposited by Pulsed Laser Deposition: Thermochromic, Surface, and Structural Analysis. Materials 2023, 16, 461. [Google Scholar] [CrossRef]
- Maffezzoni, P.; Daniel, L.; Shukla, N.; Datta, S.; Raychowdhury, A. Modeling and Simulation of Vanadium dioxide Relaxation Oscillators. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 2207. [Google Scholar] [CrossRef]
- Ramírez, J.-G.; Sharoni, A.; Dubi, Y.; Gómez, M.E.; Schuller, I.K. First-order reversal curve measurements of the metal-insulator transition in VO2: Signatures of persistent metallic domains. Phys. Rev. B 2009, 79, 235110. [Google Scholar] [CrossRef]
- Zimmers, A.; Aigouy, L.; Mortier, M.; Sharoni, A.; Wang, S.; West, K.G.; Ramirez, J.G.; Schuller, I.K. Role of thermal heating on the voltage induced insulator-metal transition in VO2. Phys. Rev. Lett. 2013, 110, 056601. [Google Scholar] [CrossRef] [PubMed]
- Qazilbash, M.M.; Schafgans, A.A.; Burch, K.S.; Yun, S.J.; Chae, B.G.; Kim, B.J.; Kim, H.T.; Basov, D.N. Electrodynamics of the vanadium oxides VO2 and V2O3. Phys. Rev. B 2008, 77, 115121. [Google Scholar] [CrossRef]
- Currie, M.; Mastro, M.A.; Wheeler, V.D. Characterizing the tunable refractive index of vanadium dioxide. Opt. Mater. Express 2017, 7, 1697. [Google Scholar] [CrossRef]
- Wikipedia on Microscope Resolution. Available online: https://en.wikipedia.org/wiki/Angular_resolution (accessed on 30 November 2024).
- IMT in VO2 Movie. Available online: https://www.youtube.com/watch?v=XoXQKpnjn7o (accessed on 30 November 2024).
- Liu, X.Y.; Wang, W.H.; Sun, Y. Dynamic evaluation of autofocusing for automated microscopic analysis of blood smear and pap smear. J. Microsc. 2007, 227, 15. [Google Scholar] [CrossRef] [PubMed]
- Mir, H.; Xu, P.; van Beek, P. An extensive empirical evaluation of focus measures for digital photography. Proc. SPIE 2014, 9023, 90230I. [Google Scholar]
- Pertuz, S.; Puig, D.; Garcia, M.A. Analysis of focus measure operators for shape-from-focus. Pattern Recognit. 2013, 46, 1415. [Google Scholar] [CrossRef]
- Liu, S.; Liu, M.; Yang, Z. An image auto-focusing algorithm for industrial image measurement. EURASIP J. Adv. Signal Process. 2016, 2016, 70. [Google Scholar] [CrossRef]
- Edgett, K.S.; Yingst, R.A.; Ravine, M.A.; Caplinger, M.A.; Maki, J.N.; Ghaemi, F.T.; Schaffner, J.A.; Bell, J.F.; Edwards, L.J.; Herkenhoff, K.E.; et al. Curiosity’s Mars Hand Lens Imager (MAHLI) investigation. Space Sci. Rev. 2012, 170, 259. [Google Scholar] [CrossRef]
- Zimmers, A.; Tomczak, J.M.; Lobo, R.P.S.M.; Bontemps, N.; Hill, C.P.; Barr, M.C.; Dagan, Y.; Greene, R.L.; Millis, A.J.; Homes, C.C. Infrared properties of electron-doped cuprates: Tracking normal-state gaps and quantum critical behavior in Pr2-xCexCuO4. Europhys. Lett. (EPL) 2005, 70, 225. [Google Scholar] [CrossRef]
- Ziv, J.; Lempel, A. Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 1978, 24, 530. [Google Scholar] [CrossRef]
- Welch, T.A. A technique for high-performance data compression. Computer 1984, 17, 8. [Google Scholar] [CrossRef]
- Taylor, C.R. Finite Difference Coefficients Calculator. Available online: https://web.media.mit.edu/~crtaylor/calculator.html (accessed on 30 November 2024).
- Compression Algorithms Comparison. Available online: https://cloudinary.com/blog/a_one_color_image_is_worth_two_thousand_words (accessed on 30 November 2024).
- Huber, M.A.; Plankl, M.; Eisele, M.; Marvel, R.E.; Sandner, F.; Korn, T.; Schüller, C.; Haglund, R.F.; Huber, R.; Cocker, T.L. Ultrafast Mid-Infrared Nanoscopy of Strained Vanadium Dioxide Nanobeams. Nano Lett. 2016, 16, 1421. [Google Scholar] [CrossRef] [PubMed]
- Dönges, S.A.; Khatib, O.; O’Callahan, B.T.; Atkin, J.M.; Park, J.H.; Cobden, D.; Raschke, M.B. Ultrafast Nanoimaging of the Photoinduced Phase Transition Dynamics in VO2. Nano Lett. 2016, 16, 3029. [Google Scholar] [CrossRef]
- Sternbach, A.J.; Ruta, F.L.; Shi, Y.; Slusar, T.; Schalch, J.; Duan, G.; McLeod, A.S.; Zhang, X.; Liu, M.; Millis, A.J.; et al. Nanotextured Dynamics of a Light-Induced Phase Transition in VO2. Nano Lett. 2021, 21, 9052. [Google Scholar] [CrossRef]
- Stauffer, D.; Aharony, A. Introduction To Percolation Theory; Taylor & Francis: Abingdon, UK, 2018. [Google Scholar]
- Coniglio, A.; Nappi, C.R.; Peruggi, F.; Russo, L. Percolation and phase transitions in the Ising model. J. Phys. Math. Gen. 1977, 10, 205. [Google Scholar] [CrossRef]
- Song, C.-L.; Main, E.J.; Simmons, F.; Liu, S.; Phillabaum, B.; Dahmen, K.A.; Hudson, E.W.; Hoffman, J.E.; Carlson, E.W. Critical nematic correlations throughout the superconducting doping range in Bi2-zPbzSr2-yLa yCuO6+x. Nat. Commun. 2023, 14, 2622. [Google Scholar] [CrossRef]
- Liu, S.; Carlson, E.W.; Dahmen, K.A. Connecting complex electronic pattern formation to critical exponents. Condens. Matter 2021, 6, 39. [Google Scholar] [CrossRef]
- Coniglio, A.; Fierro, A. Connectivity length in critical phenomena. In Encyclopedia of Complexity and Systems Science; Springer: New York, NY, USA, 2009; p. 1596. ISBN 978-0-387-75888-6. [Google Scholar]
- Harris, A.B. Effect of random defects on the critical behavior of Ising models. J. Phys. Solid State Phys. 1974, 7, 1671. [Google Scholar] [CrossRef]
- Vojta, T.; Sknepnek, R. Critical points and quenched disorder: From Harris criterion to rare regions and smearing. Phys. Status Solidi B 2004, 241, 2118. [Google Scholar] [CrossRef]
- Sood, A.; Shen, X.; Shi, Y.; Kumar, S.; Park, S.J.; Zajac, M.; Sun, Y.; Chen, L.-Q.; Ramanathan, S.; Wang, X.; et al. Universal phase dynamics in VO2 switches revealed by ultrafast operando diffraction. Science 2021, 373, 352. [Google Scholar] [CrossRef]
- McCartney, G.; Hacker, T.; Yang, B. Empowering Faculty: A Campus Cyberinfrastructure Strategy for Research Communities. Educ. Rev. 2014. Available online: https://er.educause.edu/articles/2014/7/empowering-faculty-a-campus-cyberinfrastructure-strategy-for-research-communities (accessed on 30 November 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzate Banguero, M.; Basak, S.; Raymond, N.; Simmons, F.; Salev, P.; Schuller, I.K.; Aigouy, L.; Carlson, E.W.; Zimmers, A. Optical Mapping and On-Demand Selection of Local Hysteresis Properties in VO2. Condens. Matter 2025, 10, 12. https://doi.org/10.3390/condmat10010012
Alzate Banguero M, Basak S, Raymond N, Simmons F, Salev P, Schuller IK, Aigouy L, Carlson EW, Zimmers A. Optical Mapping and On-Demand Selection of Local Hysteresis Properties in VO2. Condensed Matter. 2025; 10(1):12. https://doi.org/10.3390/condmat10010012
Chicago/Turabian StyleAlzate Banguero, Melissa, Sayan Basak, Nicolas Raymond, Forrest Simmons, Pavel Salev, Ivan K. Schuller, Lionel Aigouy, Erica W. Carlson, and Alexandre Zimmers. 2025. "Optical Mapping and On-Demand Selection of Local Hysteresis Properties in VO2" Condensed Matter 10, no. 1: 12. https://doi.org/10.3390/condmat10010012
APA StyleAlzate Banguero, M., Basak, S., Raymond, N., Simmons, F., Salev, P., Schuller, I. K., Aigouy, L., Carlson, E. W., & Zimmers, A. (2025). Optical Mapping and On-Demand Selection of Local Hysteresis Properties in VO2. Condensed Matter, 10(1), 12. https://doi.org/10.3390/condmat10010012