Metabolic Response in the Gill Tissue of Juvenile Black-Shelled Pearl Oyster (Pinctada fucata martensii) under Salinity Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Metabolomics Analysis
2.2.1. Metabolite Extraction and Liquid Chromatography–Mass Spectrometry (LC-MS) Assay
2.2.2. Data Pre-Processing and Metabolite Identification
2.3. Data Analysis
3. Results
3.1. Gill Tissue Metabolite Profiling of the Juvenile Black-Shelled P. f. martensii Following Salinity Stress
3.2. Identification and Screening of SDMs in the Gill Tissue of the Juvenile Black-Shelled P. f. Martensii under Different Salinity Levels
3.3. Metabolic Pathway Enrichment Analysis of the SDMs in the Gill Tissue of the Juvenile Black-Shelled Pearl Oysters Following Salinity Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.Y.; Huang, J.; Peng, J.Q.; Yang, C.Y.; Liao, Y.S.; Li, J.H.; Deng, Y.W.; Du, X.D. Effects of hypoxic stress on the digestion, energy metabolism, oxidative stress regulation, and immune function of the pearl oyster (Pinctada fucata martensii). Aquac. Rep. 2022, 25, 101246. [Google Scholar] [CrossRef]
- Yang, C.Y.; He, C.Z.; Deng, Y.W.; Wang, Q.H. Cloning and functional characterization of PmΔ5FAD in pearl oyster Pinctada fucata martensii. Aquac. Rep. 2022, 23, 101036. [Google Scholar] [CrossRef]
- Liao, Y.S.; Cai, C.X.; Yang, C.Y.; Zheng, Z.; Wang, Q.H.; Du, X.D.; Deng, Y.W. Effect of protein sources in formulated diets on the growth, immune response, and intestinal microflora of pearl oyster Pinctada fucata martensii. Aquac. Rep. 2020, 16, 100253. [Google Scholar] [CrossRef]
- Li, F.F.; Xie, Y.F.; Yang, C.Y.; Ye, Q.X.; Wang, F.Y.; Liao, Y.S.; Mkuye, R.; Deng, Y.W. The physiological responses to titanium dioxide nanoparticles exposure in pearl oysters (Pinctada fucata martensii). Mar. Environ. Res. 2024, 195, 106345. [Google Scholar] [CrossRef]
- Yang, C.Y.; Wu, H.L.; Chen, J.Y.; Liao, Y.S.; Mkuye, R.; Deng, Y.W.; Du, X.D. Integrated transcriptomic and metabolomic analysis reveals the response of pearl oyster (Pinctada fucata martensii) to long-term hypoxia. Mar. Environ. Res. 2023, 191, 106133. [Google Scholar] [CrossRef]
- Pourmozaffar, S.; Tamadoni Jahromi, S.; Rameshi, H.; Sadeghi, A.; Bagheri, T.; Behzadi, S.; Abrari Lazarjani, S. The role of salinity in physiological responses of bivalves. Rev. Aquac. 2020, 12, 1548–1566. [Google Scholar] [CrossRef]
- Kurihara, T. Tolerance of the bivalve Trapezium liratum (Reeve, 1843) to decrease in salinity. Plankton Benthos Res. 2017, 12, 44–52. [Google Scholar] [CrossRef]
- Sun, J.; Chen, M.Q.; Fu, Z.Y.; Yang, J.R.; Zhou, S.J.; Yu, G.; Zhou, W.L.; Ma, Z.H. A comparative study on low and high salinity tolerance of two strains of Pinctada fucata. Front. Mar. Sci. 2021, 8, 704907. [Google Scholar] [CrossRef]
- Yang, J.R.; Yang, J.L.; Chen, M.Q.; Fu, Z.Y.; Sun, J.; Yu, G.; Wang, A.M.; Ma, Z.H.; Gu, Z.F. Physical responses of Pinctada fucata to salinity stress. Front. Mar. Sci. 2022, 8, 792179. [Google Scholar] [CrossRef]
- Alagarswami, K.; Victor, A.C.C. Salinity tolerance and rate of filtration of the pearl oyster Pinctada fucata. J. Mar. Biol. Assoc. India 1976, 18, 149–158. [Google Scholar]
- Selven, S.; Philip, R. Salinity a significant environmental factor for Vibrio harveyi virulence in Fenneropenaeus indicus. Aquac. Res. 2013, 44, 747–759. [Google Scholar] [CrossRef]
- Katada, S. The influence of low salinity seawater on death and growth of the pearl oyster (Pinctada martensii) and quality of cultured pearls. Kokoritsu Shinju Kenkyusho Hokoku (Bull. Natl. Pearl Res. Lab.) 1959, 5, 489–493. (In Japanese) [Google Scholar]
- Liu, J.; Yu, D.; Li, J. Effects of salinity and pH on oxygen consumption and ammonia excretion rates in Pinctada fucata. Ocean Lakes 2011, 42, 603–607. [Google Scholar]
- Hao, R.; Wang, Z.; Yang, C.; Deng, Y.; Zheng, Z.; Wang, Q.; Du, X. Metabolomic responses of juvenile pearl oyster Pinctada maxima to different growth performances. Aquaculture 2018, 491, 258–265. [Google Scholar] [CrossRef]
- Chen, J.; Qiu, J.; Yang, C.; Liao, Y.; He, M.; Mkuye, R.; Li, J.; Deng, Y.; Du, X. Integrated transcriptomic and metabolomic analysis sheds new light on adaptation of Pinctada fucata martensii to short-term hypoxic stress. Mar. Pollut. Bull. 2023, 187, 114534. [Google Scholar] [CrossRef]
- Luo, J.; Liao, T.; Yang, C.; Chen, J.; Liao, Y.; Mkuye, R.; Deng, Y. RNA-Seq and metabolomic analysis reveal dynamic response mechanism to hypoxia in the pearl oyster Pinctada fucata martensii. Reg. Stud. Mar. Sci. 2024, 77, 103725. [Google Scholar] [CrossRef]
- Lu, F.; Li, Z.; Yang, C.; Liao, Y.; Mkuye, R.; Deng, Y. Impact of polyvinyl chloride microplastic exposure on the hepatopancreas metabolism of Pinctada fucata martensii: Insights from metabolomics. Estuar. Coast. Shelf Sci. 2024, 304, 108827. [Google Scholar] [CrossRef]
- Lu, J.; Yao, T.; Yu, G.; Ye, L. Adaptive response of triploid Fujian oyster (Crassostrea angulata) to nanoplastic stress: Insights from physiological, metabolomic, and microbial community analyses. Chemosphere 2023, 341, 140027. [Google Scholar] [CrossRef]
- Wang, S.; Song, Y.; Luo, L.; Zhang, R.; Guo, K.; Zhao, Z. Untargeted LC–MS metabolomics reveals the metabolic responses in the Eriocheir sinensis gills exposed to salinity and alkalinity stress. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2024, 28, 109908. [Google Scholar] [CrossRef]
- Wu, H.; Liu, X.; Zhang, X.; Ji, C.; Zhao, J.; Yu, J. Proteomic and metabolomic responses of clam Ruditapes philippinarum to arsenic exposure under different salinities. Aquat. Toxicol. 2013, 13, 91–100. [Google Scholar] [CrossRef]
- Gholipourkanani, H.; Punithan, V.G.; Severn-Ellis, A.; Clarke, M.W.; Dang, C. Metabolic fingerprints and immune response of silverlip pearl oysters (Pinctada maxima) under low salinity event. Aquaculture 2024, 592, 741242. [Google Scholar] [CrossRef]
- Li, Y.; Niu, D.; Wu, Y.; Dong, Z.; Li, J. Integrated analysis of transcriptomic and metabolomic data to evaluate responses to hypersalinity stress in the gill of the razor clam (Sinonovacula constricta). Comp. Biochem. Physiol. Part D Genom. Proteom. 2021, 3, 100793. [Google Scholar] [CrossRef]
- Deng, Y.W.; Fu, S.; Liu, Y.Z.; Du, X.D.; Wang, Q.H.; Huang, H.L.; Liu, D. Fertilization, hatching, survival, and growth of third-generation colored pearl oyster (Pinctada martensii) stocks. J. Appl. Aquac. 2013, 25, 113–120. [Google Scholar]
- Berger, V.J.; Kharazova, A.D. Mechanisms of Salinity Adaptations in Marine Molluscs; Springer: Dordrecht, The Netherlands, 1997; Volume 355, pp. 115–126. [Google Scholar]
- Solan, M.; Whiteley, N. (Eds.) Stressors in the Marine Environment: Physiological and Ecological Responses; Societal Implications; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Cao, W.; Bi, S.; Chi, C.; Dong, Y.; Xia, S.; Liu, Z.; Sun, Y.; Geng, Y.; Wu, B. Effects of high salinity stress on the survival, gill tissue, enzyme activity and free amino acid content in razor clam Sinonovacula constricta. Front. Mar. Sci. 2022, 9, 839614. [Google Scholar] [CrossRef]
- Hosoi, M.; Kubota, S.; Toyohara, M.; Toyohara, H.; Hayashi, I. Effect of salinity change on free amino acid content in Pacific oyster. Fish. Sci. 2003, 69, 395–400. [Google Scholar] [CrossRef]
- Lin, C.H.; Yeh, P.L.; Lee, T.H. Ionic and amino acid regulation in hard clam (Meretrix lusoria) in response to salinity challenges. Front. Physiol. 2016, 7, 368. [Google Scholar] [CrossRef]
- Hosoi, M.; Shinzato, C.; Takagi, M.; Hosoi-Tanabe, S.; Sawada, H.; Terasawa, E.; Toyohara, H. Taurine transporter from the giant Pacific oyster Crassostrea gigas: Function and expression in response to hyper-and hypo-osmotic stress. Fish. Sci. 2007, 7, 385–394. [Google Scholar] [CrossRef]
- Huo, Z.; Wang, Z.; Liang, J.; Zhang, Y.; Shen, J.; Yao, T.; Su, J.; Yu, R. Effects of salinity on embryonic development, survival, and growth of Crassostrea hongkongensis. J. Ocean Univ. China 2014, 1, 666–670. [Google Scholar] [CrossRef]
- Zhou, C.; Song, H.; Feng, J.; Hu, Z.; Yang, M.-J.; Shi, P.; Li, Y.-R.; Guo, Y.-J.; Li, H.-Z.; Zhang, T. Metabolomics and biochemical assays reveal the metabolic responses to hypo-salinity stress and osmoregulatory role of cAMP-PKA pathway in Mercenaria mercenaria. Comput. Struct. Biotechnol. J. 2022, 2, 4110–4121. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, X.; Ren, M.; Mao, X.; Qiao, S. Novel metabolic and physiological functions of branched chain amino acids: A review. J. Anim. Sci. Biotechnol. 2017, 8, 10. [Google Scholar] [CrossRef]
- Phang, J.M.; Wei, L.; Zabirnyk, O. Proline metabolism and microenvironmental stress. Annu. Rev. Nutr. 2010, 3, 441–463. [Google Scholar] [CrossRef]
- Yang, C.; Hao, R.; Du, X.; Wang, Q.; Deng, Y.; Sun, R. Response to different dietary carbohydrate and protein levels of pearl oysters (Pinctada fucata martensii) as revealed by GC–TOF/MS-based metabolomics. Sci. Total Environ. 2019, 65, 2614–2623. [Google Scholar] [CrossRef]
- Li, T.; Li, E.; Suo, Y.; Xu, Z.; Jia, Y.; Qin, J.G.; Chen, L.; Gu, Z. Energy metabolism and metabolomics response of Pacific white shrimp Litopenaeus vannamei to sulfide toxicity. Aquat. Toxicol. 2017, 18, 28–37. [Google Scholar] [CrossRef]
- Jiang, W.; Tian, X.; Fang, Z.; Li, L.; Dong, S.; Li, H.; Zhao, K. Metabolic responses in the gills of tongue sole (Cynoglossus semilaevis) exposed to salinity stress using NMR-based metabolomics. Sci. Total Environ. 2019, 65, 465–474. [Google Scholar] [CrossRef]
- Tseng, Y.C.; Hwang, P.P. Some insights into energy metabolism for osmoregulation in fish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2008, 148, 419–429. [Google Scholar] [CrossRef]
- Glover, C.N. Cellular and molecular approaches to the investigation of piscine osmoregulation: Current and future perspectives. In Fish Osmoregulation; CRC Press: Boca Raton, FL, USA, 2007; pp. 177–234. [Google Scholar]
- Fauconneau, B.; Arnal, M. In vivo protein synthesis in different tissues and the whole body of rainbow trout (Salmo gairdnerii R.). Influence of environmental temperature. Comp. Biochem. Physiol. A Comp. Physiol. 1985, 82, 179–187. [Google Scholar] [CrossRef]
- Ren, X.; Yu, Z.; Xu, Y.; Zhang, Y.; Mu, C.; Liu, P.; Li, J. Integrated transcriptomic and metabolomic responses in the hepatopancreas of kuruma shrimp (Marsupenaeus japonicus) under cold stress. Ecotoxicol. Environ. Saf. 2020, 206, 111360. [Google Scholar] [CrossRef]
- Wu, H.; Yang, C.; Hao, R.; Liao, Y.; Wang, Q.; Deng, Y. Lipidomic insights into the immune response and pearl formation in transplanted pearl oyster Pinctada fucata martensii. Front. Immunol. 2022, 1, 1018423. [Google Scholar] [CrossRef]
- Cao, C.; Wang, W.X. Copper-induced metabolic variation of oysters overwhelmed by salinity effects. Chemosphere 2017, 174, 331–341. [Google Scholar] [CrossRef]
- Kuchel, R.P.; Raftos, D.A.; Nair, S. Immunosuppressive effects of environmental stressors on immunological function in Pinctada imbricata. Fish Shellfish Immunol. 2010, 29, 930–936. [Google Scholar] [CrossRef]
- Yue, C.; Ran, Y.; Yang, C.; Ibrahim, S.; Song, X.; Lü, W.; Deng, Y.; Li, Q. The effects of salinity stress on Crassostrea hongkongensis gill morphology, cell proliferation, and apoptosis. Aquaculture 2024, 583, 740621. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, C.; Lu, F.; Li, J.; Liao, Y.; Yang, C.; Deng, Y. Metabolic Response in the Gill Tissue of Juvenile Black-Shelled Pearl Oyster (Pinctada fucata martensii) under Salinity Stress. Fishes 2024, 9, 366. https://doi.org/10.3390/fishes9090366
Qin C, Lu F, Li J, Liao Y, Yang C, Deng Y. Metabolic Response in the Gill Tissue of Juvenile Black-Shelled Pearl Oyster (Pinctada fucata martensii) under Salinity Stress. Fishes. 2024; 9(9):366. https://doi.org/10.3390/fishes9090366
Chicago/Turabian StyleQin, Chengru, Fenglan Lu, Junhui Li, Yongshan Liao, Chuangye Yang, and Yuewen Deng. 2024. "Metabolic Response in the Gill Tissue of Juvenile Black-Shelled Pearl Oyster (Pinctada fucata martensii) under Salinity Stress" Fishes 9, no. 9: 366. https://doi.org/10.3390/fishes9090366
APA StyleQin, C., Lu, F., Li, J., Liao, Y., Yang, C., & Deng, Y. (2024). Metabolic Response in the Gill Tissue of Juvenile Black-Shelled Pearl Oyster (Pinctada fucata martensii) under Salinity Stress. Fishes, 9(9), 366. https://doi.org/10.3390/fishes9090366