Characterization of Immune Aging in the Japanese Medaka (Oryzias latipes)
Abstract
1. Introduction
- I
- Molecular changes such as the alteration of T-cell signaling, decreased level of Toll-like receptors (TLRs), and increased levels of complement protein 3 (C3) which are negatively correlated with longevity, and changes in the expression of key genes like nuclear factor κβ (Nf-kß) and interleukin 1β (IL1b) [9,11,12,13,14,15].
- II
- III
2. Materials and Methods
2.1. Model Organism
2.2. Immune Gene Assessment across Ages and between Sexes
2.2.1. RNA Extraction and Reverse Transcription
2.2.2. Real Time-qPCR Relative Gene Expression
2.3. Leukocyte Population Assessments
2.4. Immune Competence Assessment—Host Resistance Assay
3. Results
3.1. Relative Immune Gene Expression
3.2. Leukocyte Population Assessment
3.3. Immune Competence Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torroba, M.; Zapata, A.G. Aging of the Vertebrate Immune System. Microsc. Res. Tech. 2003, 62, 477–481. [Google Scholar] [CrossRef]
- Miller, R. The Aging Immune System: Primer and Prospectus. Science 1996, 273, 70–74. [Google Scholar] [CrossRef]
- Effros, R. Genetic Alterations in the Ageing Immune System: Impact on Infection and Cancer. Mech. Ageing Dev. 2003, 124, 71–77. [Google Scholar] [CrossRef]
- Pawelec, G.; Remarque, E.; Barnett, Y.; Solana, R. T Cells and Aging. Front. Biosci. 1998, 3, 59–99. [Google Scholar] [CrossRef]
- Palacios, M.G.; Winkler, D.W.; Klasing, K.C.; Hasselquist, D.; Vleck, C.M. Consequences of Immune System Aging in Nature: A Study of Immunosenescence Costs in Free-Living Tree Swallows. Ecology 2011, 92, 952–966. [Google Scholar] [CrossRef] [PubMed]
- Wylezinski, L.S.; Gray, J.D.; Polk, J.B.; Harmata, A.J.; Spurlock, C.F. Illuminating an Invisible Epidemic: A Systemic Review of the Clinical and Economic Benefits of Early Diagnosis and Treatment in Inflammatory Disease and Related Syndromes. J. Clin. Med. 2019, 8, 493. [Google Scholar] [CrossRef]
- Caruso, C.; Accardi, G.; Virruso, C.; Candore, G. Sex, Gender and Immunosenescence: A Key to Understand the Different Lifespan between Men and Women? Immun. Ageing 2013, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Cheynel, L.; Lemaître, J.-F.; Gaillard, J.-M.; Rey, B.; Bourgoin, G.; Ferté, H.; Jégo, M.; Débias, F.; Pellerin, M.; Jacob, L.; et al. Immunosenescence Patterns Differ between Populations but Not between Sexes in a Long-Lived Mammal. Sci. Rep. 2017, 7, 13700. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.; Arjona, A.; Sapey, E.; Bai, F.; Fikrig, E.; Montgomery, R.R.; Lord, J.M.; Shaw, A.C. Human Innate Immunosenescence: Causes and Consequences for Immunity in Old Age. Trends Immunol. 2009, 30, 325–333. [Google Scholar] [CrossRef]
- Castelo-Branco, C.; Soveral, I. The Immune System and Aging: A Review. Gynecol. Endocrinol. 2014, 30, 16–22. [Google Scholar] [CrossRef]
- Bailey, K.L.; Smith, L.M.; Heires, A.J.; Katafiasz, D.M.; Romberger, D.J.; LeVan, T.D. Aging Leads to Dysfunctional Innate Immune Responses to TLR2 and TLR4 Agonists. Aging Clin. Exp. Res. 2019, 31, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Böni-Schnetzler, M.; Méreau, H.; Rachid, L.; Wiedemann, S.J.; Schulze, F.; Trimigliozzi, K.; Meier, D.T.; Donath, M.Y. IL-1beta Promotes the Age-Associated Decline of Beta Cell Function. iScience 2021, 24, 103250. [Google Scholar] [CrossRef] [PubMed]
- Pilkington, S.M.; Ogden, S.; Eaton, L.H.; Dearman, R.J.; Kimber, I.; Griffiths, C.E.M. Lower Levels of Interleukin-1β Gene Expression Are Associated with Impaired Langerhans’ Cell Migration in Aged Human Skin. Immunology 2018, 153, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Tilstra, J.S.; Clauson, C.L.; Niedernhofer, L.J.; Robbins, P.D. NF-κB in Aging and Disease. Aging Dis. 2011, 2, 449–465. [Google Scholar] [PubMed]
- Zheng, R.; Zhang, Y.; Zhang, K.; Yuan, Y.; Jia, S.; Liu, J. The Complement System, Aging, and Aging-Related Diseases. Int. J. Mol. Sci. 2022, 23, 8689. [Google Scholar] [CrossRef]
- Nikolich-Žugich, J. Aging of the T Cell Compartment in Mice and Humans: From No Naive Expectations to Foggy Memories. J. Immunol. 2014, 193, 2622–2629. [Google Scholar] [CrossRef]
- Salam, N.; Rane, S.; Das, R.; Faulkner, M.; Gund, R.; Kandpal, U.; Lewis, V.; Mattoo, H.; Prabhu, S.; Ranganathan, V.; et al. T Cell Ageing: Effects of Age on Development, Survival & Function. Indian J. Med. Res. 2013, 138, 595–608. [Google Scholar]
- Velissaris, D.; Pantzaris, N.; Koniari, I.; Koutsogiannis, N.; Karamouzos, V.; Kotroni, I.; Skroumpelou, A.; Ellul, J. C-Reactive Protein and Frailty in the Elderly: A Literature Review. J. Clin. Med. Res. 2017, 9, 461–465. [Google Scholar] [CrossRef]
- Panda, A.; Qian, F.; Mohanty, S.; van Duin, D.; Newman, F.K.; Zhang, L.; Chen, S.; Towle, V.; Belshe, R.B.; Fikrig, E.; et al. Age-Associated Decrease in TLR Function in Primary Human Dendritic Cells Predicts Influenza Vaccine Response. J. Immunol. 2010, 184, 2518–2527. [Google Scholar] [CrossRef]
- Chen, G.; Lustig, A.; Weng, N. T Cell Aging: A Review of the Transcriptional Changes Determined from Genome-Wide Analysis. Front. Immunol. 2013, 4, 121. [Google Scholar] [CrossRef]
- Barman, P.K.; Shin, J.E.; Lewis, S.A.; Kang, S.; Wu, D.; Wang, Y.; Yang, X.; Nagarkatti, P.S.; Nagarkatti, M.; Messaoudi, I.; et al. Production of MHCII-Expressing Classical Monocytes Increases during Aging in Mice and Humans. Aging Cell 2022, 21, e13701. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-K.; Kim, K.; Page, G.P.; Allison, D.B.; Weindruch, R.; Prolla, T.A. Gene Expression Profiling of Aging in Multiple Mouse Strains: Identification of Aging Biomarkers and Impact of Dietary Antioxidants. Aging Cell 2009, 8, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Luan, J.; Xu, H.; Jin, Z.; Guan, H.; Gao, X.; Gou, X.; Xu, L. Analysis of the Dynamic Changes in the Proportion of Immune Cells and the Proportion of Cells with Stem Cell Characteristics in the Corresponding Immune Cell Population of C57 Mice during the Natural Aging Process. Immunol. Res. 2021, 69, 520–532. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Arkatkar, T.; Jacobs, H.; Rawlings, D.; Jackson, S. Generation of Functional Murine CD11c+ Age-associated B Cells in the Absence of B Cell T-bet Expression. Eur. J. Immunol. 2018, 49, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Della Bella, S.; Bierti, L.; Presicce, P.; Arienti, R.; Valenti, M.; Saresella, M.; Vergani, C.; Villa, M.L. Peripheral Blood Dendritic Cells and Monocytes Are Differently Regulated in the Elderly. Clin. Immunol. 2007, 122, 220–228. [Google Scholar] [CrossRef]
- Sharma, R.; Diwan, B.; Sharma, A.; Witkowski, J.M. Emerging Cellular Senescence-Centric Understanding of Immunological Aging and Its Potential Modulation through Dietary Bioactive Components. Biogerontology 2022, 23, 699–729. [Google Scholar] [CrossRef]
- Gasparoto, T.H.; Dalboni, T.M.; Amôr, N.G.; Abe, A.E.; Perri, G.; Lara, V.S.; Vieira, N.A.; Gasparoto, C.T.; Campanelli, A.P. Fcγ Receptors on Aging Neutrophils. J. Appl. Oral Sci. 2021, 29, e20200770. [Google Scholar] [CrossRef]
- Boehmer, E.D.; Meehan, M.J.; Cutro, B.T.; Kovacs, E.J. Aging Negatively Skews Macrophage TLR2- and TLR4-Mediated pro-Inflammatory Responses without Affecting the IL-2-Stimulated Pathway. Mech. Ageing Dev. 2005, 126, 1305–1313. [Google Scholar] [CrossRef]
- Ding, A.; Hwang, S.; Schwab, R. Effect of Aging on Murine Macrophages. Diminished Response to IFN-Gamma for Enhanced Oxidative Metabolism. J. Immunol. 1994, 153, 2146–2152. [Google Scholar] [CrossRef]
- Gounder, S.S.; Abdullah, B.J.J.; Radzuanb, N.E.I.B.M.; Zain, F.D.B.M.; Sait, N.B.M.; Chua, C.; Subramani, B. Effect of Aging on NK Cell Population and Their Proliferation at Ex Vivo Culture Condition. Anal. Cell Pathol. 2018, 2018, 7871814. [Google Scholar] [CrossRef]
- Maldonado, E.; Morales-Pison, S.; Urbina, F.; Solari, A. Aging Hallmarks and the Role of Oxidative Stress. Antioxidants 2023, 12, 651. [Google Scholar] [CrossRef] [PubMed]
- Mogilenko, D.; Shchukina, I.; Artyomov, M. Immune Ageing at Single-Cell Resolution. Nat. Rev. Immunol. 2021, 22, 484–498. [Google Scholar] [CrossRef]
- Braasch, I.; Peterson, S.M.; Desvignes, T.; McCluskey, B.M.; Batzel, P.; Postlethwait, J.H. A New Model Army: Emerging Fish Models to Study the Genomics of Vertebrate Evo-Devo. J. Exp. Zool. Part B Mol. Dev. Evol. 2015, 324, 316–341. [Google Scholar] [CrossRef]
- Bajoghli, B.; Dick, A.M.; Claasen, A.; Doll, L.; Aghaallaei, N. Zebrafish and Medaka: Two Teleost Models of T-Cell and Thymic Development. Int. J. Mol. Sci. 2019, 20, 4179. [Google Scholar] [CrossRef]
- Bo, J.; Cai, L.; Xu, J.-H.; Wang, K.-J.; Au, D.W.T. The Marine Medaka Oryzias melastigma—A Potential Marine Fish Model for Innate Immune Study. Mar. Pollut. Bull. 2011, 63, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Kirchmaier, S.; Naruse, K.; Wittbrodt, J.; Loosli, F. The Genomic and Genetic Toolbox of the Teleost Medaka (Oryzias latipes). Genetics 2015, 199, 905–918. [Google Scholar] [CrossRef] [PubMed]
- Wittbrodt, J.; Shima, A.; Schartl, M. Medaka—A Model Organism from the Far East. Nat. Rev. Genet. 2002, 3, 53–64. [Google Scholar] [CrossRef]
- Shanthanagouda, A.H.; Guo, B.-S.; Ye, R.R.; Chao, L.; Chiang, M.W.L.; Singaram, G.; Cheung, N.K.M.; Zhang, G.; Au, D.W.T. Japanese Medaka: A Non-Mammalian Vertebrate Model for Studying Sex and Age-Related Bone Metabolism in Vivo. PLoS ONE 2014, 9, e88165. [Google Scholar] [CrossRef]
- Kasahara, M.; Naruse, K.; Sasaki, S.; Nakatani, Y.; Qu, W.; Ahsan, B.; Yamada, T.; Nagayasu, Y.; Doi, K.; Kasai, Y.; et al. The Medaka Draft Genome and Insights into Vertebrate Genome Evolution. Nature 2007, 447, 714–719. [Google Scholar] [CrossRef]
- Hinton, D.E.; Kullman, S.W.; Hardman, R.C.; Volz, D.C.; Chen, P.-J.; Carney, M.; Bencic, D.C. Resolving Mechanisms of Toxicity While Pursuing Ecotoxicological Relevance? Mar. Pollut. Bull. 2005, 51, 635–648. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.R.; Peterson, D.R.; Seemann, F.; Kitamura, S.-I.; Lee, J.S.; Lau, T.C.K.; Tsui, S.K.W.; Au, D.W.T. Immune Competence Assessment in Marine Medaka (Orzyias melastigma)—A Holistic Approach for Immunotoxicology. Environ. Sci. Pollut. Res. 2017, 24, 27687–27701. [Google Scholar] [CrossRef] [PubMed]
- Morabito, G.; Ryabova, A.; Valenzano, D.R. Immune Aging in Annual Killifish. Immun. Ageing 2024, 21, 18. [Google Scholar] [CrossRef]
- Bereshchenko, O.; Bruscoli, S.; Riccardi, C. Glucocorticoids, Sex Hormones, and Immunity. Front. Immunol. 2018, 9, 1332. [Google Scholar] [CrossRef]
- Dong, M.; Seemann, F.; Humble, J.L.; Liang, Y.; Peterson, D.R.; Ye, R.; Ren, H.; Kim, H.-S.; Lee, J.-S.; Au, D.W.; et al. Modification of the Plasma Complement Protein Profile by Exogenous Estrogens Is Indicative of a Compromised Immune Competence in Marine Medaka (Oryzias melastigma). Fish Shellfish Immunol. 2017, 70, 260–269. [Google Scholar] [CrossRef]
- Shepherd, B.S.; Rees, C.B.; Binkowski, F.P.; Goetz, F.W. Characterization and Evaluation of Sex-Specific Expression of Suppressors of Cytokine Signaling (SOCS)-1 and -3 in Juvenile Yellow Perch (Perca flavescens) Treated with Lipopolysaccharide. Fish Shellfish Immunol. 2012, 33, 468–481. [Google Scholar] [CrossRef]
- Ye, R.R.; Lei, E.N.Y.; Lam, M.H.W.; Chan, A.K.Y.; Bo, J.; van de Merwe, J.P.; Fong, A.C.C.; Yang, M.M.S.; Lee, J.S.; Segner, H.E.; et al. Gender-Specific Modulation of Immune System Complement Gene Expression in Marine Medaka Oryzias melastigma Following Dietary Exposure of BDE-47. Environ. Sci. Pollut. Res. 2011, 19, 2477–2487. [Google Scholar] [CrossRef]
- Campbell, J.H.; Dixon, B.; Whitehouse, L.M. The Intersection of Stress, Sex and Immunity in Fishes. Immunogenetics 2021, 73, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.; Bo, J.; Cheung, K.; Au, D. Gender-Specific Modulation of Innate Immune Responses in Fish under Environmental Stresses. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2012, 163, S2–S3. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, B.; Liu, X.; Li, H.; Xie, L.; Gao, Y.; Duan, R.; Li, Z.; Zhang, J.; Zheng, Y.; et al. Effects of Sex and Aging on the Immune Cell Landscape as Assessed by Single-Cell Transcriptomic Analysis. Proc. Natl. Acad. Sci. USA 2021, 118, e2023216118. [Google Scholar] [CrossRef]
- Mócsai, A. Diverse Novel Functions of Neutrophils in Immunity, Inflammation, and Beyond. J. Exp. Med. 2013, 210, 1283–1299. [Google Scholar] [CrossRef] [PubMed]
- Lord, J.M.; Butcher, S.; Killampali, V.; Lascelles, D.; Salmon, M. Neutrophil Ageing and Immunesenescence. Mech. Ageing Dev. 2001, 122, 1521–1535. [Google Scholar] [CrossRef] [PubMed]
- Sapey, E.; Greenwood, H.; Walton, G.; Mann, E.; Love, A.; Aaronson, N.; Insall, R.H.; Stockley, R.A.; Lord, J.M. Phosphoinositide 3-Kinase Inhibition Restores Neutrophil Accuracy in the Elderly: Toward Targeted Treatments for Immunosenescence. Blood 2014, 123, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Wenisch, C.; Patruta, S.; Daxböck, F.; Krause, R.; Hörl, W. Effect of Age on Human Neutrophil Function. J. Leukoc. Biol. 2000, 67, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Secombes, C.J.; Fletcher, T.C. The Role of Phagocytes in the Protective Mechanisms of Fish. Annu. Rev. Fish Dis. 1992, 2, 53–71. [Google Scholar] [CrossRef]
- Wu, L.; Li, L.; Gao, A.; Ye, J.; Li, J. Antimicrobial Roles of Phagocytosis in Teleost Fish: Phagocytic B Cells vs Professional Phagocytes. Aquac. Fish. 2024, 9, 105–114. [Google Scholar] [CrossRef]
- Katzenback, B.A.; Belosevic, M. Isolation and Functional Characterization of Neutrophil-like Cells, from Goldfish (Carassius auratus L.) Kidney. Dev. Comp. Immunol. 2009, 33, 601–611. [Google Scholar] [CrossRef]
- Smith, N.C.; Rise, M.L.; Christian, S.L. A Comparison of the Innate and Adaptive Immune Systems in Cartilaginous Fish, Ray-Finned Fish, and Lobe-Finned Fish. Front. Immunol. 2019, 10, 2292. [Google Scholar] [CrossRef]
- Hewagama, A.; Patel, D.; Yarlagadda, S.; Strickland, F.M.; Richardson, B.C. Stronger Inflammatory/Cytotoxic T-Cell Response in Women Identified by Microarray Analysis. Genes Immun. 2009, 10, 509–516. [Google Scholar] [CrossRef]
- Marriott, I.; Huet-Hudson, Y.M. Sexual Dimorphism in Innate Immune Responses to Infectious Organisms. Immunol. Res. 2006, 34, 177–192. [Google Scholar] [CrossRef]
- Meier, A.; Chang, J.J.; Chan, E.S.; Pollard, R.B.; Sidhu, H.K.; Kulkarni, S.; Wen, T.F.; Lindsay, R.J.; Orellana, L.; Mildvan, D.; et al. Sex Differences in the TLR-Mediated Response of pDCs to HIV-1 Are Associated with Higher Immune Activation in Infected Women. Nat. Med. 2009, 15, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Flanagan, K.L. Sex Differences in Immune Responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Reynolds, L.; Hou, L.; Lohman, K.; Cui, W.; Kritchevsky, S.; Mccall, C.; Liu, Y. Transcriptomic Profiles of Aging in Naïve and Memory CD4+ Cells from Mice. Immun. Ageing (IA) 2017, 14, 15. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Zen, Q.; Tebo, J.; Schlottmann, K.; Coggeshall, M.; Mortensen, R.F. Effect of Human C-Reactive Protein on Chemokine and Chemotactic Factor-Induced Neutrophil Chemotaxis and Signaling. J. Immunol. 1998, 161, 2533–2540. [Google Scholar] [CrossRef]
- Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen Recognition and Innate Immunity. Cell 2006, 124, 783–801. [Google Scholar] [CrossRef]
- Qian, F.; Wang, X.; Zhang, L.; Chen, S.; Piecychna, M.; Allore, H.; Bockenstedt, L.; Malawista, S.; Bucala, R.; Shaw, A.C.; et al. Age-Associated Elevation in TLR5 Leads to Increased Inflammatory Responses in the Elderly. Aging Cell 2012, 11, 104–110. [Google Scholar] [CrossRef]
- Patel, M.; Shen, Z.; Wira, C. Do Endometrial Immune Changes with Age Prior to Menopause Compromise Fertility in Women? Explor. Immunol. 2022, 2, 677–692. [Google Scholar] [CrossRef]
- Larbi, A.; Fülöp, T.; Pawelec, G. Immune Receptor Signaling, Aging and Autoimmunity. In Multichain Immune Recognition Receptor Signaling: From Spatiotemporal Organization to Human Disease; Sigalov, A.B., Ed.; Springer: New York, NY, USA, 2008; pp. 312–324. ISBN 978-0-387-09789-3. [Google Scholar]
- Herrero, C.; Sebastián, C.; Marqués, L.; Comalada, M.; Xaus, J.; Valledor, A.F.; Lloberas, J.; Celada, A. Immunosenescence of Macrophages: Reduced MHC Class II Gene Expression. Exp. Gerontol. 2002, 37, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaran, N.; Faddoul, F.; da Silva, A.P.; Jayaraman, S.; Schneider, E.; Mamileti, P.; Weinberg, A.; Pandiyan, P. IL-1β-MyD88-mTOR Axis Promotes Immune-Protective IL-17A+Foxp3+ Cells During Mucosal Infection and Is Dysregulated with Aging. Front. Immunol. 2020, 11, 595936. [Google Scholar] [CrossRef]
- Asquith, M.; Haberthur, K.; Brown, M.; Engelmann, F.; Murphy, A.; Al-Mahdi, Z.; Messaoudi, I. Age-Dependent Changes in Innate Immune Phenotype and Function in Rhesus Macaques (Macaca mulatta). Pathobiol. Aging Age-Relat. Dis. 2012, 2, 18052. [Google Scholar] [CrossRef]
- García-García, V.A.; Alameda, J.P.; Page, A.; Casanova, M.L. Role of NF-κB in Ageing and Age-Related Diseases: Lessons from Genetically Modified Mouse Models. Cells 2021, 10, 1906. [Google Scholar] [CrossRef]
- Prince, L.R.; Allen, L.; Jones, E.C.; Hellewell, P.G.; Dower, S.K.; Whyte, M.K.; Sabroe, I. The Role of Interleukin-1β in Direct and Toll-like Receptor 4-Mediated Neutrophil Activation and Survival. Am. J. Pathol. 2004, 165, 1819–1826. [Google Scholar] [CrossRef] [PubMed]
- Stokes, C.A.; Ismail, S.; Dick, E.P.; Bennett, J.A.; Johnston, S.L.; Edwards, M.R.; Sabroe, I.; Parker, L.C. Role of Interleukin-1 and MyD88-Dependent Signaling in Rhinovirus Infection. J. Virol. 2011, 85, 7912–7921. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, M.G.; Poppelaars, F.; van Kooten, C.; Mollnes, T.E.; Tedesco, F.; Würzner, R.; Trouw, L.A.; Truedsson, L.; Daha, M.R.; Roos, A.; et al. Age and Sex-Associated Changes of Complement Activity and Complement Levels in a Healthy Caucasian Population. Front. Immunol. 2018, 9, 2664. [Google Scholar] [CrossRef] [PubMed]
- Gordon, L.I.; Douglas, S.D.; Kay, N.E.; Yamada, O.; Osserman, E.F.; Jacob, H.S. Modulation of Neutrophil Function by Lysozyme. Potential Negative Feedback System of Inflammation. J. Clin. Investig. 1979, 64, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Saurabh, S.; Sahoo, P.K. Lysozyme: An Important Defence Molecule of Fish Innate Immune System. Aquac. Res. 2008, 39, 223–239. [Google Scholar] [CrossRef]
- Robinson, D.P.; Lorenzo, M.E.; Jian, W.; Klein, S.L. Elevated 17β-Estradiol Protects Females from Influenza A Virus Pathogenesis by Suppressing Inflammatory Responses. PLoS Pathog. 2011, 7, e1002149. [Google Scholar] [CrossRef]
- Mastrogiovanni, M.; Martínez-Navarro, F.J.; Bowman, T.V.; Cayuela, M.L. Inflammation in Development and Aging: Insights from the Zebrafish Model. Int. J. Mol. Sci. 2024, 25, 2145. [Google Scholar] [CrossRef]
- Abou-Dahech, M.S.; Williams, F.E. Aging, Age-Related Diseases, and the Zebrafish Model. J. Dement. Alzheimer’s Dis. 2024, 1, 48–71. [Google Scholar] [CrossRef]
- Sepulcre, M.P.; López-Muñoz, A.; Angosto, D.; García-Alcazar, A.; Meseguer, J.; Mulero, V. TLR Agonists Extend the Functional Lifespan of Professional Phagocytic Granulocytes in the Bony Fish Gilthead Seabream and Direct Precursor Differentiation towards the Production of Granulocytes. Mol. Immunol. 2011, 48, 846–859. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DiBona, E.; Humble, J.L.; Duran, D.; Au, D.W.T.; Seemann, F. Characterization of Immune Aging in the Japanese Medaka (Oryzias latipes). Fishes 2024, 9, 333. https://doi.org/10.3390/fishes9090333
DiBona E, Humble JL, Duran D, Au DWT, Seemann F. Characterization of Immune Aging in the Japanese Medaka (Oryzias latipes). Fishes. 2024; 9(9):333. https://doi.org/10.3390/fishes9090333
Chicago/Turabian StyleDiBona, Elizabeth, Joseph L. Humble, Daniel Duran, Doris Wai Ting Au, and Frauke Seemann. 2024. "Characterization of Immune Aging in the Japanese Medaka (Oryzias latipes)" Fishes 9, no. 9: 333. https://doi.org/10.3390/fishes9090333
APA StyleDiBona, E., Humble, J. L., Duran, D., Au, D. W. T., & Seemann, F. (2024). Characterization of Immune Aging in the Japanese Medaka (Oryzias latipes). Fishes, 9(9), 333. https://doi.org/10.3390/fishes9090333