Assessments of 12 Commercial Species Stocks in a Subtropical Upwelling Ecosystem Using the CMSY and BSM Methods
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. The CMSY and BSM Method
2.3. Prior Parameter
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Froese, R.; Zeller, D.; Kleisner, K.; Pauly, D. What catch data can tell us about the status of global fisheries. Mar. Biol. Int. J. Life Ocean. Coast. Waters 2012, 159, 1283–1292. [Google Scholar] [CrossRef]
- Dick, E.; MacCall, A.D. Depletion-based stock reduction analysis: A catch-based method for determining sustainable yields for data-poor fish stocks. Fish. Res. 2011, 110, 331–341. [Google Scholar] [CrossRef]
- Carruthers, T.R.; Punt, A.E.; Walters, C.J.; MacCall, A.; McAllister, M.K.; Dick, E.J.; Cope, J. Evaluating methods for setting catch limits in data-limited fisheries. Fish. Res. 2014, 153, 48–68. [Google Scholar] [CrossRef]
- Punt, A.E.; Smith, A.D.; Smith, D.C.; Tuck, G.N.; Klaer, N.L. Selecting relative abundance proxies for B MSY and B MEY. ICES J. Mar. Sci. 2014, 71, 469–483. [Google Scholar] [CrossRef]
- Newman, D.; Berkson, J.; Suatoni, L. Current methods for setting catch limits for data-limited fish stocks in the United States. Fish. Res. 2015, 164, 86–93. [Google Scholar] [CrossRef]
- Ren, Q.-Q.; Liu, M. Assessing northwest pacific fishery stocks using two new methods: The monte carlo catch-MSY (CMSY) and the bayesian schaefer model (BSM). Front. Mar. Sci. 2020, 7, 430. [Google Scholar] [CrossRef]
- Cortés, E.; Brooks, E.N. Stock status and reference points for sharks using data-limited methods and life history. Fish Fish. 2018, 19, 1110–1129. [Google Scholar] [CrossRef]
- Tsikliras, A.C.; Touloumis, K.; Pardalou, A.; Adamidou, A.; Keramidas, I.; Orfanidis, G.A.; Dimarchopoulou, D.; Koutrakis, M. Status and exploitation of 74 un-assessed demersal fish and invertebrate stocks in the Aegean Sea (Greece) using abundance and resilience. Front. Mar. Sci. 2021, 7, 578601. [Google Scholar] [CrossRef]
- Dowling, N.A.; Smith, A.D.; Smith, D.C.; Parma, A.M.; Dichmont, C.M.; Sainsbury, K.; Wilson, J.R.; Dougherty, D.T.; Cope, J.M. Generic solutions for data-limited fishery assessments are not so simple. Fish Fish. 2019, 20, 174–188. [Google Scholar] [CrossRef]
- Martell, S.; Froese, R. A simple method for estimating MSY from catch and resilience. Fish Fish. 2013, 14, 504–514. [Google Scholar] [CrossRef]
- Froese, R.; Demirel, N.; Coro, G.; Kleisner, K.M.; Winker, H. Estimating fisheries reference points from catch and resilience. Fish Fish. 2017, 18, 506–526. [Google Scholar] [CrossRef]
- Rosenberg, A.A.; Fogarty, M.J.; Cooper, A.B.; Dickey-Collas, M.; Fulton, E.A.; Gutiérrez, N.L.; Hyde, K.J.; Kleisner, K.M.; Kristiansen, T.; Longo, C. Developing New Approaches to Global Stock Status Assessment and Fishery Production Potential of the Seas; FAO Fisheries and Aquaculture Circular; FAO: Rome, Italy, 2014. [Google Scholar]
- Borges, L.; Cerviño, S.; Cooper, A.; Fischer, S.; Horbowy, J.; Kell, L.; Kokkalis, A.; Mildenberger, T.; De Oliveira, J.; Pennino, M.G. Tenth Workshop on the Development of Quantitative Assessment Methodologies Based on Life-History Traits, Exploitation Characteristics, and Other Relevant Parameters for Data-Limited Stocks (WKLIFE X); International Council for the Exploration of the Sea (ICES): Copenhagen, Denmark, 2020. [Google Scholar]
- Andrašūnas, V.; Ivanauskas, E.; Švagždys, A.; Razinkovas-Baziukas, A. Assessment of four major fish species stocks in the Lithuanian and Russian parts of Curonian lagoon (SE Baltic Sea) using CMSY method. Fishes 2022, 7, 9. [Google Scholar] [CrossRef]
- Froese, R.; Winker, H.; Coro, G.; Demirel, N.; Tsikliras, A.C.; Dimarchopoulou, D.; Scarcella, G.; Quaas, M.; Matz-Lück, N. Status and rebuilding of European fisheries. Mar. Policy 2018, 93, 159–170. [Google Scholar] [CrossRef]
- Palomares, M.L.; Froese, R.; Derrick, B.; Nöel, S.-L.; Tsui, G.; Woroniak, J.; Pauly, D. A Preliminary Global Assessment of the Status of Exploited Marine Fish and Invertebrate Populations; Sea around Us Project, University of British Columbia: British Columbia, VA, Canada, 2018. [Google Scholar]
- Ju, P.L.; Tian, Y.J.; Chen, M.R.; Yang, S.Y.; Liu, Y.; Xing, Q.W.; Sun, P. Evaluating stock status of 16 commercial fish species in the coastal and offshore waters of Taiwan using the CMSY and BSM methods. Front. Mar. Sci. 2020, 7, 618. [Google Scholar] [CrossRef]
- Liang, C.; Xian, W.W.; Pauly, D. Assessments of 15 Exploited Fish Stocks in Chinese, South Korean and Japanese Waters Using the CMSY and BSM Methods. Front. Mar. Sci. 2020, 7, 623. [Google Scholar] [CrossRef]
- Zhai, L.; Liang, C.; Pauly, D. Assessments of 16 exploited fish stocks in Chinese waters using the CMSY and BSM methods. Front. Mar. Sci. 2020, 7, 483993. [Google Scholar] [CrossRef]
- Yang, S.Y. A preliminary study on population of golden sardine (Sardinella aurita) from Fujian and Zhejiang offshore waters. J. Fish. China 1993, 17, 105–112. (In Chinese) [Google Scholar]
- Lu, Z.B.; Dai, Q.S.; Yan, Y.M. Biomass and total allowed catch of chub mackerel and round scad in Minnan-Taiwan Shoal Fishing Ground. J. Oceanogr. Taiwan Strait 2000, 19, 506–510. [Google Scholar]
- Lin, L.S.; Zheng, Y.J.; Ma, C.Y. Distribution of nekton stock density and its community structure in Taiwan Strait in summer and autumn. J. Appl. Ecol. 2005, 16, 1948–1951. [Google Scholar]
- Chen, F.J. Survey of mitre squid resource in Minnan-Taiwan bank fishing ground and suggestions for sustainable utilization. Fish. Inf. Strategy 2016, 31, 270–277. [Google Scholar]
- Lu, Z.B.; Dai, Q.S.; Yan, Y.M. Productivity and maximum sustainable yield of fishery resources in Taiwan Strait and its adjacent waters. J. Fish. Sci. China 2002, 9, 28–32. [Google Scholar]
- Lu, Z.B.; Dai, Q.S.; Xiao, F.S. The resources production of fish and its different ecological type in Minnan-Taiwan Bank fishing grounds. J. Fish. China 2006, 30, 360–366. (In Chinese) [Google Scholar]
- Xiao, F.-S. Fishery resource capacity in ecosystem of Minnan-Taiwan shoal fishing ground. J. Oceanogr. Taiwan Strait 2003, 22, 449–456. [Google Scholar]
- Hilborn, R.; Buratti, C.C.; Díaz Acuña, E.; Hively, D.; Kolding, J.; Kurota, H.; Baker, N.; Mace, P.M.; de Moor, C.L.; Muko, S. Recent trends in abundance and fishing pressure of agency-assessed small pelagic fish stocks. Fish Fish. 2022, 23, 1313–1331. [Google Scholar] [CrossRef]
- Rooper, C.N.; Boldt, J.L.; Uriarte, A.; Hansen, C.; Ward, T.; Gaichas, S. Small pelagic fish: New frontiers in science and sustainable management. Can. J. Fish. Aquat. Sci. 2024, 81, 984–989. [Google Scholar] [CrossRef]
- Ministry of Agricultrue and Rural Affairs of the People’s Republic of China (MARA), China Fishery Statistical Yearbook; China Agriculture Press: Beijing, China, 1971–2007. (In Chinese)
- Millar, R.; Meyer, R. Nonlinear State-Space Modeling of Fisheries Biomass Dynamics Using the Gibbs Sampler; Technical Report STAT9802; Department of Statistics, The University of Auckland: Auckland, New Zealand, 1998. [Google Scholar]
- Schaefer, M.B. Some aspects of the dynamics of populations important to the management of the commercial marine fisheries. Bull. Math. Biol. 1991, 53, 253–279. [Google Scholar] [CrossRef]
- Schaefer, M.B. A study of the dynamics of the fishery for yellowfin tuna in the eastern tropical Pacific Ocean. Inter-Am. Trop. Tuna Comm. Bull. 1957, 2, 243–285. [Google Scholar]
- Froese, R.; Palomares, M.L.D.; Pauly, D. Estimation of life history key facts of fishes. Fishbase 2000, 1594, 167–175. [Google Scholar]
- Musick, J. Criteria to define extinction risk in marine fishes. Fisheries 1999, 24, 6–14. [Google Scholar] [CrossRef]
- Hong, H.S. Minnan-Taiwan Bank Fishing Ground Upwelling Ecosystem Study; Science Press: Beijing, China, 1991; pp. 1–18. [Google Scholar]
- Hu, W.J.; Ye, G.Q.; Lu, Z.B.; Du, J.G.; Chen, M.R.; Chou, L.M.; Yang, S.Y. Study on fish life history traits and variation in the Taiwan Strait and its adjacent waters. Acta Oceanol. Sin. 2015, 34, 45–54. [Google Scholar] [CrossRef]
- Yan, Y.M. Study on the biology and resource variation of hairtail Trichiurus haumela (Forskal) in Fujian sea area. South China Fish. Sci. 2005, 1, 32–36. [Google Scholar]
- Ye, S.Z.; He, W.C.; Zhang, Z.L.; Zhang, C.M. The status and analysis of light seine fishery on Minnan-Taiwan bank fishing ground. South China Fish. Sci. 2005, 1, 39–43. [Google Scholar]
- Dai, L.; Hodgdon, C.T.; Xu, L.; Gao, C.; Tian, S.; Chen, Y. Evaluating Catch-Only Methods to Inform Fisheries Management in the East China Sea. Front. Mar. Sci. 2022, 9, 939177. [Google Scholar] [CrossRef]
- Ovando, D.; Free, C.M.; Jensen, O.P.; Hilborn, R. A history and evaluation of catch-only stock assessment models. Fish Fish. 2022, 23, 616–630. [Google Scholar] [CrossRef]
- Miyagawa, M.; Ichinokawa, M.; Yoda, M.; Kurota, H.; Ohshimo, S.; Nishida, H. Commentary: Stock status assessments for 12 exploited fishery species in the Tsushima Warm Current region, Southwest Japan and East China, using the CMSY and BSM methods. Front. Mar. Sci. 2021, 8, 703039. [Google Scholar] [CrossRef]
- Al Alawi, Y.; Dutta, S. Assessment of Seabream Fisheries Stock of Oman Using the Monte Carlo Catch Maximum Sustainable Yield and the Bayesian Schaefer Model Methods. Sustainability 2023, 15, 15692. [Google Scholar] [CrossRef]
- Froese, R.; Winker, H.; Coro, G.; Palomares, M.-L.; Tsikliras, A.C.; Dimarchopoulou, D.; Touloumis, K.; Demirel, N.; Vianna, G.; Scarcella, G. New developments in the analysis of catch time series as the basis for fish stock assessments: The CMSY++ method. Acta Ichthyol. Piscat. 2023, 53, 173–189. [Google Scholar] [CrossRef]
- Kalhoro, M.A.; Liu, Q.; Zhu, L.; Jiang, Z.; Liang, Z. Assessing fishing capacity of two tuna fish species using different time-series data in Pakistan, Northern Arabian Sea. Estuar. Coast. Shelf Sci. 2024, 299, 108692. [Google Scholar] [CrossRef]
- Barman, P.; Karim, E.; Khatun, M.; Rahman, M.; Alam, M.; Liu, Q. Application of CMSY to estimate biological reference points of Bombay duck (Harpadon neherus) from the Bay of Bengal, Bangladesh. Appl. Ecol. Environ. Res. 2020, 18, 8023–8034. [Google Scholar] [CrossRef]
- Hélias, A. Data for fish stock assessment obtained from the CMSY algorithm for all Global FAO Datasets. Data 2019, 4, 78. [Google Scholar] [CrossRef]
- Cilbiz, M.; Uysal, R. Stock Assessment of Atherina Boyeri Risso, 1810 Using Two Different Methodological Approaches (length-based VPA and Catch-only CMSY), in a Freshwater Ecosystem. Thalass. Int. J. Mar. Sci. 2023, 39, 1015–1025. [Google Scholar] [CrossRef]
- Fang, S.M.; Yang, S.Y.; Zhang, C.M. Selective water temperature and its seasonal variation for main species fished by light-seine from the southern Taiwan Straits. J. Fish. China 2000, 24, 370–375. [Google Scholar]
- Chen, F.P. Discussion on continuable utilization of Minnan-Taiwan bank fishery resources. J. Fish. Res. 2006, 2, 12–15. [Google Scholar]
- Sun, D.R.; Qiu, Y.S. Esitimation of growth and mortality parameter of Priacanthus macracanthus in Beibu Bay. J. Fujian Fish. 2003, 1, 7–12. [Google Scholar]
- Sun, D.R.; Qiu, Y.S. Estimation of growth and mortality parameters of Priacanthus macracanthus in the north continental shelf of South China Sea. J. Zhanjiang Ocean. Univ. 2004, 24, 28–34. [Google Scholar]
- Zhou, X.; Chen, Z.; Xiong, P.; Cai, Y.; Li, J.; Zhang, P.; Zhang, J.; Li, M.; Fan, J. Exploring the Spatial and Temporal Distribution of Frigate Tuna (Auxis thazard) Habitat in the South China Sea in Spring and Summer during 2015–2019 Using Fishery and Remote Sensing Data. Fishes 2022, 7, 218. [Google Scholar] [CrossRef]
- Nisar, U.; Ali, R.; Mu, Y.; Sun, Y. Assessing five major exploited tuna species in India (eastern and western Indian ocean) using the Monte Carlo method (CMSY) and the bayesian schaefer model (BSM). Sustainability 2021, 13, 8868. [Google Scholar] [CrossRef]
- Kindong, R.; Wu, F.; Tian, S.; Sarr, O. How well do ‘catch-only’assessment models capture catch time series start years and default life history prior values? A preliminary stock assessment of the south atlantic ocean blue shark using a catch-based model. Animals 2022, 12, 1386. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, Q.; Liao, B.; Zhang, Q.; Han, Y.n. Estimating biological reference points for Largehead hairtail (Trichiurus lepturus) fishery in the Yellow Sea and Bohai Sea. Acta Oceanol. Sin. 2019, 38, 20–26. [Google Scholar] [CrossRef]
- Yan, R.; Fan, J.T.; Chen, Z.Z.; Cai, Y.C.; Zhang, K.; Xu, Y.W.; Xu, S.N. The probability distribution of the jack mackerel (Trachurus japonicus) density in the offshore of the northern South China Sea. J. Fish. Sci. China 2019, 26, 91–98. [Google Scholar] [CrossRef]
Scientific Name (Common Name) | Catch | Abundance Data |
---|---|---|
Sardinella aurita (Round sardinella) | 1971–2007 | CPUE (1971–2007) |
Decapterus maruadsi (Japanese scad) | 1971–2007 | CPUE (1992–2007) |
Etrumeus sadina (Red-eye round herring) | 1971–2007 | CPUE (1983–2007) |
Megalaspis cordyla (Torpedo scad) | 1980–1991 | CPUE (1980–1991) |
Decapterus russelli (Indian scad) | 1971–2007 | CPUE (1997–2007) |
Trachurus japonicus (Japanese jack mackerel) | 1971–2007 | CPUE (1993–2002) |
Priacanthus macracanthus (Red bigeye) | 1978–1989 | CPUE (1982–1989) |
Trichiurus lepturus (Largehead hairtail) | 1971–1989 | CPUE (1971–1980) |
Rastrelliger kanagurta (Indian mackerel) | 1971–2007 | CPUE (2000–2007) |
Auxis thazard (Frigate tuna) | 1971–2007 | CPUE (1987–2007) |
Mene maculata (Moonfish) | 1980–1998 | CPUE (1994–1998) |
Uroteuthis chinensis (Mitre squid) | 1971–1989 | CPUE (1971–1989) |
Resilience (r) | Suggested Prior | Range Assumed for the Stocks in Table 1 |
---|---|---|
High | 0.6–1.5 | S. aurita, D. maruadsi, M. maculata |
Medium | 0.2–0.8 | E. sadina, M. cordyla, D. russelli, T. japonicus, P. macracanthus, T. lepturus, R. kanagurta, A. thazard, U. chinensis |
Low | 0.05–0.5 | --- |
Depletion | Suggested Prior | Range Assumed for the Stocks in Table 1 |
---|---|---|
Very low | 0.9–1 | D. russelli **, T. japonicus **, A. thazard **, M. maculata **, |
Low | 0.4–0.8 | S. aurita, D. maraudsi **, E. sadina, M. cordyla, R. kanagurta, U. chinensis ** |
Medium | 0.2–0.6 | P. macracanthus **, T. lepturus |
Strong | 0.01–0.4 | --- |
Very strong | 0.01–0.2 | --- |
Depletion | Suggestion | Assumed Level of Final Depletion for the Stocks in Table 1 |
---|---|---|
Low | 0.4–0.8 | E. sadina, M. cordyla |
Medium | 0.2–0.6 | S. aurita, D. maruadsi **, R. kanagurta |
Strong | 0.01–0.4 | D. russelli **, T. japonicus **, P. macracanthus **, T. lepturus, M. maculata ** |
Very strong | 0.01–0.2 | A. thazard **, U. chinensis ** |
Common Name | Scientific Names | r | K | MSY | Bend/k | B/BMSY | F/FMSY | Status |
---|---|---|---|---|---|---|---|---|
Round sardinella | Sardinella aurita | 0.85 | 87.4 | 18.5 | 0.61 | 1.21 | 1.45 | Overfishing |
Japanese scad | Decapterus maruadsi | 1.15 | 173 | 49.6 | 0.60 | 1.20 | 0.84 | Healthy |
Red-eye round herring | Etrumeus sadina | 0.43 | 38.4 | 4.15 | 0.55 | 1.10 | 0.28 | Healthy |
Torpedo scad | Megalaspis cordyla | 0.68 | 16 | 2.71 | 0.77 | 1.53 | 0.18 | Healthy |
Indian scad | Decapterus russelli | 1.03 | 42.1 | 10.8 | 0.44 | 0.89 | 0.57 | Recovering |
Japanese jack mackerel | Trachurus japonicus | 0.49 | 32.2 | 3.93 | 0.30 | 0.61 | 1.19 | Overfished |
Red bigeye | Priacanthus macracanthus | 0.35 | 3.54 | 0.31 | 0.30 | 0.60 | 1.89 | Overfished |
Largehead hairtail | Trichiurus lepturus | 0.87 | 0.66 | 0.14 | 0.35 | 0.69 | 0.73 | Recovering |
Indian mackerel | Rastrelliger kanagurta | 0.59 | 10.5 | 1.55 | 0.23 | 0.47 | 3.67 | Outside of safe biological limits |
Frigate tuna | Auxis thazard | 0.67 | 3.11 | 0.52 | 0.20 | 0.39 | 0.45 | Outside of safe biological limits |
Moonfish | Mene maculata | 0.93 | 4.63 | 1.07 | 0.15 | 0.30 | 1.5 | Outside of safe biological limits |
Mitre squid | Uroteuthis chinensis | 0.48 | 5.7 | 0.69 | 0.16 | 0.32 | 0.85 | Outside of safe biological limits |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Ju, P.; Lu, Z.; Liang, C.; Chen, B.; Du, J.; Li, P. Assessments of 12 Commercial Species Stocks in a Subtropical Upwelling Ecosystem Using the CMSY and BSM Methods. Fishes 2024, 9, 332. https://doi.org/10.3390/fishes9090332
Chen L, Ju P, Lu Z, Liang C, Chen B, Du J, Li P. Assessments of 12 Commercial Species Stocks in a Subtropical Upwelling Ecosystem Using the CMSY and BSM Methods. Fishes. 2024; 9(9):332. https://doi.org/10.3390/fishes9090332
Chicago/Turabian StyleChen, Lin, Peilong Ju, Zhenbin Lu, Cui Liang, Bin Chen, Jianguo Du, and Ping Li. 2024. "Assessments of 12 Commercial Species Stocks in a Subtropical Upwelling Ecosystem Using the CMSY and BSM Methods" Fishes 9, no. 9: 332. https://doi.org/10.3390/fishes9090332
APA StyleChen, L., Ju, P., Lu, Z., Liang, C., Chen, B., Du, J., & Li, P. (2024). Assessments of 12 Commercial Species Stocks in a Subtropical Upwelling Ecosystem Using the CMSY and BSM Methods. Fishes, 9(9), 332. https://doi.org/10.3390/fishes9090332